The present study predicts ratcheting response of 1070 and 16MnR steel samples using nonlinear kinematic hardening rules of Ohno–Wang (O–W) and Ahmadzadeh–Varvani (A–V) under uniaxial stress cycles. The ratcheting values predicted based on the O–W model were noticeably influenced by the magnitude of exponents and the number of backstress components. Taking into account both material and cyclic stress level dependent coefficients, the A–V hardening rule offered a simple framework to predict ratcheting strain over loading cycles. A comparative study of these hardening rules to assess ratcheting of 1070 and 16MnR steel samples undergoing uniaxial loading conditions resulted in a close agreement of the A–V and O–W models. The choice of hardening rules in the assessment of materials ratcheting was further discussed based on the complexity of the hardening rule, number of constants/coefficients required to characterize ratcheting response, and central processing unit (CPU) time required to run the models.

References

References
1.
Bairstow
,
L.
,
1911
, “
The Elastic Limits of Iron and Steel Under Cyclical Variations of Stress
,”
Philos. Trans. R. Soc. Lond., A
,
210
(
459–470
), pp.
35
55
.10.1098/rsta.1911.0002
2.
Benham
,
P. P.
,
1965
, “
Some Observations of Cyclic Strain-Induced Creep in Mild Steel at Room Temperature
,”
Int. J. Mech. Sci.
,
7
(
2
), pp.
81
86
.10.1016/0020-7403(65)90067-6
3.
Chen
,
X.
,
Gao
,
B.
, and
Chen
,
G.
,
2006
, “
Ratcheting Study of Pressurized Elbows Subjected to Reversed In-Plane Bending
,”
ASME J. Pressure Vessel Technol.
,
128
(
4
), pp.
525
532
.10.1115/1.2349562
4.
Hassan
,
T.
, and
Kyriakides
,
S.
,
1992
, “
Ratcheting in Cyclic Plasticity, Part I: Uniaxial Behavior
,”
Int. J. Plast.
,
8
(
1
), pp.
91
116
.10.1016/0749-6419(92)90040-J
5.
Hassan
,
T.
,
Corona
,
E.
, and
Kyriakides
,
S.
,
1992
, “
Ratcheting in Cyclic Plasticity Part II: Multiaxial Behavior
,”
Int. J. Plast.
,
8
(
2
), pp.
117
146
.10.1016/0749-6419(92)90010-A
6.
Jiang
,
Y.
,
1993
, “
Cyclic Plasticity With Emphasis on Ratcheting
,” PhD thesis, University of Illinois at Urbana-Champaign, Champaign, IL.
7.
Hassan
,
T.
, and
Kyriakides
,
S.
,
1994
, “
Ratcheting of Cyclically Hardening and Softening Materials, Part I: Uniaxial Behavior
,”
Int. J. Plast.
,
10
(
2
), pp.
149
184
.10.1016/0749-6419(94)90033-7
8.
Hassan
,
T.
, and
Kyriakides
,
S.
,
1994
, “
Ratcheting of Cyclically Hardening and Softening Materials, Part II: Multiaxial Behavior
,”
Int. J. Plast.
,
10
(
2
), pp.
185
212
.10.1016/0749-6419(94)90034-5
9.
Kim
,
K. S.
,
Jiao
,
R.
,
Chen
,
X.
, and
Sakane
,
M.
,
2009
, “
Ratcheting of Stainless Steel 304 Under Multiaxial Nonproportional Loading
,”
ASME J. Pressure Vessel Technol.
,
131
(
2
), p.
021405
.10.1115/1.3027498
10.
Kang
,
G. Z.
, and
Liu
,
Y. J.
,
2008
, “
Uniaxial Ratcheting and Low-Cycle Fatigue Failure of the Steel With Cyclic Stabilizing or Softening Feature
,”
Mater. Sci. Eng.: A
,
472
(
1
), pp.
258
268
.10.1016/j.msea.2007.03.029
11.
Taleb
,
L.
, and
Hauet
,
A.
,
2009
, “
Multiscale Experimental Investigations About the Cyclic Behavior of the 304L SS
,”
Int. J. Plast.
,
25
(
7
), pp.
1359
1385
.10.1016/j.ijplas.2008.09.004
12.
Yaguchi
,
M.
, and
Takahashi
,
Y.
,
2005
, “
Ratcheting of Viscoplastic Material With Cyclic Softening, Part 1: Experiments on Modified 9Cr-1Mo Steel
,”
Int. J. Plast.
,
21
(
1
), pp.
43
65
.10.1016/j.ijplas.2004.02.001
13.
Armstrong
,
P. J.
, and
Fredrick
,
C. O.
,
1966
, “
A Mathematical Representation of the Multiaxial Bauschinger Effect
,” CEGB, Berkeley Nuclear Laboratories, Report No. RD/B/N731.
14.
Chaboche
,
J. L.
,
1991
, “
On Some Modifications of Kinematic Hardening to Improve the Description of Ratcheting Effects
,”
Int. J. Plast.
,
7
(
7
), pp.
661
678
.10.1016/0749-6419(91)90050-9
15.
Bower
,
A. F.
,
1989
, “
Cyclic Hardening Properties of Hard-Drawn Copper and Rail Steel
,”
J. Mech. Phys. Solids
,
37
(
4
), pp.
455
470
.10.1016/0022-5096(89)90024-0
16.
Bari
,
S.
, and
Hassan
,
T.
,
2002
, “
An Advancement in Cyclic Plasticity Modeling for Multiaxial Ratcheting Simulation
,”
Int. J. Plast.
,
18
(
7
), pp.
873
894
.10.1016/S0749-6419(01)00012-2
17.
Delobelle
,
P.
,
Robinet
,
P.
, and
Bocher
,
L.
,
1995
, “
Experimental Study and Phenomenological Modelization of Ratcheting Under Uniaxial and Biaxial Loading on an Austenitic Stainless Steel
,”
Int. J. Plast.
,
11
(
4
), pp.
295
330
.10.1016/S0749-6419(95)00001-1
18.
Burlet
,
H.
, and
Cailletaud
,
G.
,
1986
, “
Numerical Techniques for Cyclic Plasticity at Variable Temperature
,”
Eng. Comput.
,
3
(
2
), pp.
143
153
.10.1108/eb023652
19.
Ohno
,
N.
, and
Wang
,
J. D.
,
1993
, “
Kinematic Hardening Rules With Critical State of Dynamic Recovery, Part I: Formulations and Basic Features for Ratcheting Behavior
,”
Int. J. Plast.
,
9
(
3
), pp.
375
390
.10.1016/0749-6419(93)90042-O
20.
Ohno
,
N.
, and
Wang
,
J. D.
,
1993
, “
Kinematic Hardening Rules With Critical State of Dynamic Recovery, Part II: Application to Experiments of Ratcheting Behavior
,”
Int. J. Plast.
,
9
(
3
), pp.
391
403
.10.1016/0749-6419(93)90043-P
21.
Jiang
,
Y.
, and
Sehitoglu
,
H.
,
1996
, “
Modeling of Cyclic Ratcheting Plasticity, Part I: Development of Constitutive Relations
,”
ASME J. Appl. Mech.
,
63
(
3
), pp.
720
725
.10.1115/1.2823355
22.
Jiang
,
Y.
, and
Sehitoglu
,
H.
,
1996
, “
Modeling of Cyclic Ratcheting Plasticity, Part II: Comparison of Model Simulations With Experiments
,”
ASME J. Appl. Mech.
,
63
(
3
), pp.
726
733
.10.1115/1.2823356
23.
McDowell
,
D. L.
,
1995
, “
Stress State Dependence of Cyclic Ratcheting Behavior of Two Rail Steels
,”
Int. J. Plast.
,
11
(
4
), pp.
397
421
.10.1016/S0749-6419(95)00005-4
24.
Abdel-Karim
,
M.
, and
Ohno
,
N.
,
1998
, “
Uniaxial Ratcheting Characteristics of 316FR Steel at Room Temperature
,”
Trans. Jpn. Soc. Mech. Eng. JSME Ser. A
,
64
(
628
), pp.
101
107
(2nd report, simulation based on constitutive models in Japanese).
25.
Abdel-Karim
,
M.
, and
Ohno
,
N.
,
2000
, “
Kinematic Hardening Model Suitable for Ratcheting With Steady-State
,”
Int. J. Plast.
,
16
(
3
), pp.
225
240
.10.1016/S0749-6419(99)00052-2
26.
Döring
,
R.
,
Hoffmeyer
,
J.
,
Seeger
,
T.
, and
Vormwald
,
M.
,
2003
, “
A Plasticity Model for Calculating Stress-Strain Sequences Under Multiaxial Nonproportional Cyclic Loading
,”
Comput. Mater. Sci.
,
28
(
3
), pp.
587
596
.10.1016/j.commatsci.2003.08.015
27.
Kang
,
G. Z.
,
2004
, “
A Viscoplastic Constitutive Model for Ratcheting of Cyclically Stable Materials and Its Finite Element Implementation
,”
Mech. Mater.
,
36
(
4
), pp.
299
312
.10.1016/S0167-6636(03)00024-3
28.
Chen
,
X.
,
Jiao
,
R.
, and
Kim
,
K. S.
,
2003
, “
Simulation of Ratcheting Strain to a High Number of Cycles Under Multiaxial Loading
,”
Int. J. Solids Struct.
,
40
(
26
), pp.
7449
7461
.10.1016/j.ijsolstr.2003.08.009
29.
Chen
,
X.
, and
Jiao
,
R.
,
2004
, “
Modified Kinematic Hardening Rule for Multiaxial Ratcheting Prediction
,”
Int. J. Plast.
,
20
(
4
), pp.
871
898
.10.1016/j.ijplas.2003.05.005
30.
Chen
,
X.
,
Jiao
,
R.
, and
Kim
,
K. S.
,
2005
, “
On the Ohno–Wang Kinematic Hardening Rules for Multiaxial Ratcheting Modeling of Medium Carbon Steel
,”
Int. J. Plast.
,
21
(
1
), pp.
161
184
.10.1016/j.ijplas.2004.05.005
31.
Yaguchi
,
M.
, and
Takahashi
,
Y.
,
2005
, “
Ratcheting of Viscoplastic Material With Cyclic Softening, Part 2: Application Of Constitutive Models
,”
Int. J. Plast.
,
21
(
4
), pp.
835
860
.10.1016/j.ijplas.2004.05.012
32.
Colak
,
O. U.
,
2008
, “
Kinematic Hardening Rules for Modeling Uniaxial and Multiaxial Ratcheting
,”
Mater. Des.
,
29
(
8
), pp.
1575
1581
.10.1016/j.matdes.2007.11.003
33.
Dafalias
,
Y. F.
, and
Feigenbaum
,
H. P.
,
2011
, “
Biaxial Ratcheting With Novel Variations of Kinematic Hardening
,”
Int. J. Plast.
,
27
(
4
), pp.
479
491
.10.1016/j.ijplas.2010.06.002
34.
Ahmadzadeh
,
G. R.
, and
Varvani-Farahani
,
A.
,
2013
, “
Ratcheting Assessment of Materials Based on the Modified Armstrong–Frederick Hardening Rule at Various Uniaxial Stress Levels
,”
Fatigue Fract. Eng. Mater. Struct.
,
36
(
12
), pp.
1232
1245
.10.1111/ffe.12059
35.
Ahmadzadeh
,
G. R.
, and
Varvani-Farahani
,
A.
,
2013
, “
Ratcheting Assessment of Steel Alloys Under Step-Loading Conditions
,”
Mater. Des.
,
51
(
3–4
), pp.
231
241
.10.1016/j.matdes.2013.04.047
36.
Bari
,
S.
, and
Hassan
,
T.
,
2000
, “
Anatomy of Coupled Constitutive Models for Ratcheting Simulation
,”
Int. J. Plast.
,
16
(
3
), pp.
381
409
.10.1016/S0749-6419(99)00059-5
37.
Dafalias
,
Y. F.
,
Kourousis
,
K. I.
, and
Saridis
,
G. J.
,
2008
, “
Multiplicative AF Kinematic Hardening in Plasticity
,”
Int. J. Solids Struct.
,
45
(
10
), pp.
2861
2880
.10.1016/j.ijsolstr.2008.01.001
38.
Dafalias
,
Y. F.
,
Kourousis
,
K. I.
, and
Saridis
,
G. J.
,
2008
, “
Corrigendum to ‘Multiplicative AF kinematic hardening in plasticity’
,”
Int. J. Solids Struct.
,
45
(
17
), p.
4878
.10.1016/j.ijsolstr.2008.04.010
39.
Chaboche
,
J. L.
,
Dang-Wan
,
K.
, and
Cordier
,
G.
,
1979
, “
Modelization of the Strain Memory Effect on the Cyclic Hardening of 316 Stainless Steel
,”
Proceedings of SMIRT-5
, Division L.,
Berlin
, Paper No. L. 11/3.
40.
Abdel-Karim
,
M.
,
2009
, “
Modified Kinematic Hardening Rules for Simulations of Ratcheting
,”
Int. J. Plast.
,
25
(
8
), pp.
1560
1587
.10.1016/j.ijplas.2008.10.004
41.
Ohno
,
N.
,
1998
, “
Constitutive Modeling of Cyclic Plasticity With Emphasis on Ratcheting
,”
Int. J. Mech. Sci.
,
40
(
2–3
), pp.
397
421
.10.1016/S0020-7403(97)00053-2
42.
Jiang
,
Y.
, and
Zhang
,
J.
,
2008
, “
Benchmark Experiments and Characteristic Cyclic Plasticity Deformation
,”
Int. J. Plast.
,
24
(
9
), pp.
1481
1515
.10.1016/j.ijplas.2007.10.003
43.
Jiang
,
Y.
, and
Sehitoglu
,
H.
,
1994
, “
Multiaxial Cyclic Ratcheting Under Multiple Step Loading
,”
Int. J. Plast.
,
10
(
8
), pp.
849
870
.10.1016/0749-6419(94)90017-5
44.
Li
,
C.
,
Chen
,
G.
,
Chen
,
X.
, and
Zhang
,
W.
,
2012
, “
Ratcheting Strain and Simulation of 16MnR Steel Under Uniaxial Cyclic Loading
,”
J. Comput. Mater. Sci.
,
57
, pp.
43
47
.10.1016/j.commatsci.2011.09.003
You do not currently have access to this content.