Hydrogen-assisted fatigue crack growth rates (da/dN) were measured for SA516 Grade 70 steel as a function of stress-intensity factor range (ΔK) and load-cycle frequency to provide life-prediction data relevant to pressure swing adsorber (PSA) vessels. For ΔK values up to 18.5 MPa m1/2, the baseline da/dN versus ΔK relationship measured at 1 Hz in 2.8 MPa hydrogen gas represents an upper bound with respect to crack growth rates measured at lower frequency. However, at higher ΔK values, baseline da/dN data must be corrected to account for modestly higher crack growth rates at the lower frequencies relevant to PSA vessel operation.

References

References
1.
Nelson
,
H. G.
,
1976
, “
On the Mechanism of Hydrogen-Enhanced Crack Growth in Ferritic Steels
,”
Proceedings of the Second International Conference on Mechanical Behavior of Materials
, Boston, MA, Aug. 16–20 ASM, Metals Park, OH, pp.
690
694
.
2.
Walter
,
R. J.
, and
Chandler
,
W. T.
,
1976
, “
Cyclic-Load Crack Growth in ASME SA-105 Grade II Steel in High-Pressure Hydrogen at Ambient Temperature
,”
Effect of Hydrogen on Behavior of Materials
,
A. W.
Thompson
and
I. M.
Bernstein
, eds.,
The Metallurgical Society of AIME
,
Warrendale, PA
, pp.
273
286
.
3.
Stewart
,
A. T.
,
1977
, “
The Effect of Hydrogen on Fatigue Crack Propagation in Steels
,”
Mechanisms of Environment Sensitive Cracking of Materials
,
P. R.
Swann
, F.P. Ford, and A.R.C. Westwood, eds.,
The Metals Society
,
London, UK
, pp.
400
411
.
4.
Suresh
,
S.
, and
Ritchie
,
R. O.
,
1982
, “
Mechanistic Dissimilarities Between Environmentally Influenced Fatigue-Crack Propagation at Near-Threshold and Higher Growth Rates in Lower Strength Steels
,”
Metal Sci.
,
16
(
11
), pp.
529
538
.10.1179/msc.1982.16.11.529
5.
McIntyre
,
P.
,
Pumphrey
,
P. H.
, and
Goddard
,
D. J.
,
1984
, “
The Influence of High Pressure Hydrogen Gas on the Rate of Fatigue Crack Growth in Pressure Vessel Steel to BS1501-224 Grade 32B-Final Report
,” Central Electricity Generating Board, UK, Report No. TPRD/L/MT0167/M83.
6.
Cialone
,
H. J.
, and
Holbrook
,
J. H.
,
1985
, “
Effects of Gaseous Hydrogen on Fatigue Crack Growth in Pipeline Steel
,”
Metall. Trans. A
,
16A
(
1
), pp.
115
122
.10.1007/BF02656719
7.
Macadre
,
M.
,
Artamonov
,
M.
,
Matsuoka
,
S.
, and
Furtado
,
J.
,
2011
, “
Effects of Hydrogen Pressure and Test Frequency on Fatigue Crack Growth Properties of Ni-Cr-Mo Steel Candidate for a Storage Cylinder of a 70 MPa Hydrogen Filling Station
,”
Eng. Fract. Mech.
,
78
(
18
), pp.
3196
3211
.10.1016/j.engfracmech.2011.09.007
8.
Nibur
,
K. A.
, and
Somerday
,
B. P.
,
2012
, “
Fracture and Fatigue Test Methods in Hydrogen Gas
,”
Gaseous Hydrogen Embrittlement of Materials in Energy Technologies
,
R. P.
Gangloff
and
B. P.
Somerday
, eds., Vol.
1
,
Woodhead Publishing Ltd.
,
Cambridge, UK
, pp.
195
236
.
9.
Xu
,
K.
,
2012
, “
Hydrogen Embrittlement of Carbon Steels and Their Welds
,”
Gaseous Hydrogen Embrittlement of Materials in Energy Technologies
,
R. P.
Gangloff
and
B. P.
Somerday
, eds., Vol.
1
,
Woodhead Publishing Ltd.
,
Cambridge, UK
, pp.
526
561
.
10.
Wachob
,
H. F.
, and
Nelson
,
H. G.
,
1981
, “
Influence of Microstructure on the Fatigue Crack Growth of A516 in Hydrogen
,”
Hydrogen Effects in Metals
,
I. M.
Bernstein
and
A. W.
Thompson
, eds.,
The Metallurgical Society of AIME
,
Warrendale, PA
, pp.
703
711
.
11.
ASTM E647-05,
2005
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
.
12.
Somerday
,
B. P.
,
Sofronis
,
P.
,
Nibur
,
K. A.
,
San Marchi
,
C.
, and
Kirchheim
,
R.
,
2013
, “
Elucidating the Variables Affecting Accelerated Fatigue Crack Growth of Steels in Hydrogen Gas With Low Oxygen Concentrations
,”
Acta Mater.
,
61
(
16
), pp.
6153
6170
.10.1016/j.actamat.2013.07.001
13.
Slifka
,
A. J.
,
Drexler
,
E. S.
,
Nanninga
,
N. E.
,
Levy
,
Y. S.
,
McColskey
,
J. D.
,
Amaro
,
R. L.
, and
Stevenson
,
A. E.
,
2014
, “
Fatigue Crack Growth of Two Pipeline Steels in a Pressurized Hydrogen Environment
,”
Corr. Sci.
,
78
, pp.
313
321
.10.1016/j.corsci.2013.10.014
14.
Amaro
,
R. L.
,
Rustagi
,
N.
,
Findley
,
K. O.
,
Drexler
,
E. S.
, and
Slifka
,
A. J.
,
2014
, “
Modeling the Fatigue Crack Growth of X100 Pipeline Steel in Gaseous Hydrogen
,”
Int. J. Fatigue
,
59
, pp.
262
271
.10.1016/j.ijfatigue.2013.08.010
You do not currently have access to this content.