The use of lattice Boltzmann methods (LBMs) for fluid flow and its coupling with finite element method (FEM) structural models for fluid–structure interaction (FSI) are investigated. FSI modeling methodology and example applications are presented for single-component flows. Furthermore, multicomponent LBM fluid models are also studied with structural dynamics solvers for 2D FSI simulations. To enhance modeling capability for domains with complex surfaces, a novel coupling method is introduced that allows use of both classical LBM (CLBM) and a finite element LBM (FELBM) to be combined into a hybrid LBM (HLBM) that exploits the flexibility of FELBM while retaining the efficiency of CLBM.

References

References
1.
Chen
,
S.
, and
Doolen
,
G. D.
,
1998
, “
Lattice Boltzmann Method for Fluid Flows
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
329
364
.10.1146/annurev.fluid.30.1.329
2.
Aidun
,
C. K.
, and
Clausen
,
J. R.
,
2010
, “
Lattice Boltzmann Method for Complex Flows
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
439
472
.10.1146/annurev-fluid-121108-145519
3.
Nourgaliev
,
R.
,
Dinh
,
T.
,
Theofanous
,
T.
, and
Joseph
,
D.
,
2003
, “
The Lattice Boltzmann Equation Method: Theoretical Interpretation, Numerics and Implications
,”
Int. J. Multiphase Flow
,
29
(
1
), pp.
117
169
.10.1016/S0301-9322(02)00108-8
4.
Hao
,
J.
, and
Zhu
,
L.
,
2010
, “
A Lattice Boltzmann Based Implicit Immersed Boundary Method for Fluid-Structure Interaction
,”
Comput. Math. Appl.
,
59
(
1
), pp.
185
193
.10.1016/j.camwa.2009.06.055
5.
Cheng
,
Y.
, and
Zhang
,
H.
,
2010
, “
Immersed Boundary Method and Lattice Boltzmann Method Coupled FSI Simulation of Mitral Leaflet Flow
,”
Comput. Fluids
,
39
(
5
), pp.
871
881
.10.1016/j.compfluid.2010.01.003
6.
Peskin
,
C. S.
,
2002
, “
The Immersed Boundary Method
,”
Acta Numer.
,
11
, pp.
479
517
.10.1017/S0962492902000077
7.
Luo
,
H.
,
Mittal
,
R.
,
Zheng
,
X.
,
Bielamowicz
,
S. A.
,
Walsh
,
R. J.
, and
Hahn
,
J. K.
,
2008
, “
An Immersed-Boundary Method for Flow–Structure Interaction in Biological Systems With Application to Phonation
,”
J. Comput. Phys.
,
227
(
22
), pp.
9303
9332
.10.1016/j.jcp.2008.05.001
8.
Owen
,
D. R. J.
,
Leonardi
,
C. R.
, and
Feng
,
Y. T.
,
2011
, “
An Efficient Framework for Fluid-Structure Interaction Using the Lattice Boltzmann Method and Immersed Moving Boundaries
,”
Int. J. Numer. Methods Eng.
,
87
(
1–5
), pp.
66
95
.10.1002/nme.2985
9.
Nguyen
,
N.-Q.
,
2005
, “
Sedimentation of Hard-Sphere Suspensions at Low Reynolds Number
,”
J. Fluid Mech.
,
525
, pp.
73
104
.10.1017/S0022112004002563
10.
Feng
,
Z.-G.
, and
Michaelides
,
E. E.
,
2005
, “
Proteus: A Direct Forcing Method in the Simulations of Particulate Flows
,”
J. Comput. Phys.
,
202
(
1
), pp.
20
51
.10.1016/j.jcp.2004.06.020
11.
Feng
,
Y. T.
,
Han
,
K.
, and
Owen
,
D. R. J.
,
2007
, “
Coupled Lattice Boltzmann Method and Discrete Element Modelling of Particle Transport in Turbulent Fluid Flows: Computational Issues
,”
Int. J. Numer. Methods Eng.
,
72
(
9
), pp.
1111
1134
.10.1002/nme.2114
12.
Kwon
,
Y.
, and
McDermott
,
P. M.
,
2001
, “
Effects of Void Growth and Nucleation on Plastic Deformation of Plates Subjected to Fluid-Structure Interaction
,”
ASME J. Pressure Vessel Technol.
,
123
(
4
), pp.
480
485
.10.1115/1.1400740
13.
Kwon
,
Y. W.
,
2008
, “
Coupling of Lattice Boltzmann and Finite Element Methods for Fluid-Structure Interaction Application
,”
ASME J. Pressure Vessel Technol.
,
130
(
1
), p.
011302
.10.1115/1.2826405
14.
Wolfram
,
S.
,
1986
,
Theory and Applications of Cellular Automata
,
World Scientific
,
Singapore
.
15.
McNamara
,
G. R.
, and
Zanetti
,
G.
,
1988
, “
Use of the Boltzmann Equation to Simulate Lattice-Gas Automata
,”
Phys. Rev. Lett.
,
61
, pp.
2332
2335
.10.1103/PhysRevLett.61.2332
16.
He
,
X.
, and
Doolen
,
G. D.
,
1997
, “
Lattice Boltzmann Method on a Curvilinear Coordinate System: Vortex Shedding Behind a Circular Cylinder
,”
Phys. Rev. E
,
56
, pp.
434
440
.10.1103/PhysRevE.56.434
17.
Ladd
,
A.
,
1993
, “
Numerical Simulations of Particulate Suspensions via a Discretized Boltzmann Equation Part II. Numerical Results
,” Lawrence Livermore National Laboratory, Technical Report No. UCRL-JC-113349.
18.
Kwon
,
Y.
, and
Bang
,
H.
,
2000
,
The Finite Element Method Using Matlab
,
CRC Press
,
New York
.
19.
Kwon
,
Y. W.
, and
Jo
,
J. C.
,
2009
, “
Development of Weighted Residual Based Lattice Boltzmann Techniques for Fluid-Structure Interaction Application
,”
ASME J. Pressure Vessel Technol.
,
131
(
3
), p.
031304
.10.1115/1.3089494
20.
Turek
,
S.
, and
Hron
,
J.
,
2006
, “
Proposal for Numerical Benchmarking of Fluid–Structure Interaction Between an Elastic Object and Laminar Incompressible Flow
,”
Fluid-Structure Interaction
,
H.-J.
Bungartz
,
M.
Schäfer
,
T. J.
Barth
,
M.
Griebel
,
D. E.
Keyes
,
R. M.
Nieminen
,
D.
Roose
, and
T.
Schlick
, eds., Vol.
53
(Lecture Notes in Computational Science and Engineering),
Springer
,
Berlin, Heidelberg
, pp.
371
385
.
21.
Shan
,
X.
, and
Doolen
,
G.
,
1995
, “
Multicomponent Lattice-Boltzmann Model With Interparticle Interaction
,”
J. Stat. Phys.
,
81
, pp.
379
393
.10.1007/BF02179985
You do not currently have access to this content.