The strain-based failure assessment diagram (SB-FAD) has been developed for predicting failure from flaws in components subjected to high plastic strains. In this paper, a combined numerical and experimental approach is used to apply the SB-FAD to predict failure from a series of API 5L grades X80 and X100 curved wide plate (CWP) specimens with shallow notches machined into the pipe girth weld. For the CWP specimens tested in this work, the SB-FAD in its unmodified form resulted in over-conservative predictions of failure. This is attributed to the SB-FAD assuming high constraint conditions and the presence of a sharp fatigue crack, whereas the CWP specimens tested in this work were low constraint and contained a shallow machined notch without fatigue cracks. A modification of the SB-FAD is then proposed to account for nonsharp defects loaded to high plastic strains under conditions of low constraint. The resulting predictions of the modified SB-FAD show significantly reduced conservatism compared to the unmodified SB-FAD.

References

References
1.
R6,
2013
,
Assessment of the Integrity of Structures Containing Defects
, Revision 4,
EDF Energy Nuclear Generation Limited
, Gloucester, UK.
2.
BS7910:2005,
2005
,
Guide on the Methods for Assessing the Acceptability of Flaws in Metallic Structures
,
British Standards Institution
,
London, UK
.
3.
SINTAP,
1999
, “
Structural Integrity Assessment Procedure
,” Final Revision, Brite-Euram Programme, Report No. EU-Project BE 95-1462.
4.
API 579-1:2007/ASME FFS-1:2007,
2007
,
Fitness for Service
,
2nd ed.
,
American Petroleum Institute and American Society of Mechanical Engineers
,
Washington, DC
.
5.
Koçak
,
M.
,
Webster
,
S.
,
Janosch
,
J. J.
,
Ainsworth
,
R. A.
, and
Koers
,
R.
, eds.,
2008
,
FITNET Fitness-for-Service (FFS)–MK8: Procedure
, Vol.
1
,
GKSS Research Centre
,
Geesthacht, Germany
.
6.
Budden
,
P. J.
,
2006
, “
Failure Assessment Diagram Methods for Strain-Based Fracture
,”
Eng. Fract. Mech.
,
73
(
5
), pp.
537
552
.10.1016/j.engfracmech.2005.09.008
7.
Budden
,
P. J.
, and
Ainsworth
,
R. A.
,
2012
, “
The Shape of a Strain-Based Failure Assessment Diagram
,”
Int. J. Press. Vess. Pip.
,
89
(
1
), pp.
59
66
.10.1016/j.ijpvp.2011.09.004
8.
Linkens
,
D.
,
Formby
,
C. L.
, and
Ainsworth
,
R. A.
,
2000
, “
A Strain-Based Approach to Fracture Assessment—Example Applications
,”
Proceedings of the. International Conference of the Engineering Integrity Assessment
, Cambridge, UK, Apr. 10–12, pp. 45–52.
9.
BS7448-2,
1997
, “
Fracture Mechanics Toughness Tests. Method for Determination of KIC, Critical CTOD and Critical J Values of Welds in Metallic Materials
,” BSI, London, UK.
10.
Denys
,
R.
,
Andrews
,
R.
,
Zarea
,
M.
, and
Knauf
,
G.
,
2010
, “
EPRG Tier 2 Guidelines for the Assessment of Defects in Transmission Pipeline Girth Welds
,”
ASME
Paper No. IPC2010-31640. 10.1115/IPC2010-31640
11.
Hertelé
,
S.
,
De Waele
,
W.
,
Denys
,
R.
,
Verstraete
,
M.
,
Van Minnebruggen
,
K.
, and
Horn
,
A.
,
2013
, “
Weld Strength Mismatch in Strain Based Flaw Assessment: Which Definition to Use?
,”
ASME J. Pressure Vessel Technol.
,
135
(
6
), p.
061402
.10.1115/1.4025343
12.
Rice
,
J. R.
,
1968
, “
A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
379
386
.10.1115/1.3601206
13.
Wang
,
W. Q.
,
Li
,
A. J.
,
Li
,
P. N.
, and
Ju
,
D. Y.
,
1994
, “
An Engineering Approach for Notch Elastic-Plastic Fracture Analysis
,”
Int. J. Pressure Vessels Piping
,
60
(
1
), pp.
1
16
.10.1016/0308-0161(94)90107-4
14.
Horn
,
A. J.
, and
Sherry
,
A. H.
,
2012
, “
An Engineering Assessment Methodology for Non-Sharp Defects in Steel Structures–Part I: Procedure Development
,”
Int. J. Pressure Vessels Piping
,
89
(
1
), pp.
137
150
.10.1016/j.ijpvp.2011.10.014
15.
Horn
,
A. J.
, and
Sherry
,
A. H.
,
2012
, “
An Engineering Assessment Methodology for Non-Sharp Defects in Steel Structures–Part II: Procedure Validation and Constraint Analysis
,”
Int. J. Pressure Vessels Piping
,
89
(
1
), pp.
151
161
.10.1016/j.ijpvp.2011.10.015
16.
Chen
,
Y. H.
, and
Lu
,
T. J.
,
2004
, “
On the Path Dependence of the J-Integral in Notch Problems
,”
Int. J. Solids Struct.
,
41
(
3,4
), pp.
607
618
.10.1016/j.ijsolstr.2003.10.007
17.
Hertelé
,
S.
,
De Waele
,
W.
,
Denys
,
R.
, and
Verstraete
,
M.
,
2012
, “
Full-Range Stress–Strain Behaviour of Contemporary Pipeline Steels: Part I. Model Description
,”
Int. J. Pressure Vessels Piping
,
92
, pp.
34
40
.10.1016/j.ijpvp.2012.01.006
18.
Ramberg
,
W.
, and
Osgood
,
W. R.
,
1943
, “
Description of Stress–Strain Curves by Three Parameters
,”
National Advisory Committee for Aeronautics
, Washington, DC, Technical Note Nr. 902.
19.
Sherry
,
A. H.
,
Wilkes
,
M. A.
,
Beardsmore
,
D. W.
, and
Lidbury
,
D. P. G.
,
2005
, “
Material Constraint Parameters for the Assessment of Shallow Defects in Structural Components—Part I: Parameter Solutions
,”
Eng. Fract. Mech.
,
72
(
15
), pp.
2373
2395
.10.1016/j.engfracmech.2004.12.009
20.
.
Mohr
,
W.
,
2003
, “
Strain-Based Design of Pipelines
,” Edison Welding Institute, Columbus, OH, Project Report No. 45892GTH.
21.
Pisarski
,
H. G.
, and
Goldthorpe
,
M. R.
,
1995
, “
Implications of Weld Metal Mis-Match on Defect Assessment Procedures to BS PD 6493:1991
,”
Proceedings of ASME International Conference on Offshore Mechanics and Arctic Engineering
, Copenhagen, Denmark, Vol.
3
, pp.
75
85
.
22.
Fairchild
,
D. P.
,
Macia
,
M. L.
,
Kibey
,
S.
,
Wang
,
X.
,
Krishnan
,
V. R.
,
Bardi
,
F.
,
Tang
,
H.
, and
Cheng
,
W.
,
2011
, “
A Multi-Tiered Procedure for Engineering Critical Assessment of Strain-Based Pipelines
,”
Proceedings of 21st International Offshore and Polar Engineering Conference
, Maui, HI, June 19–24, pp.
698
705
.
23.
Brocks
,
W.
, and
Scheider
,
I.
,
2001
, “
Numerical Aspects of the Path-Dependence of the J-Integral in Incremental Plasticity
,”
GKSS Forschungszentrum, Geesthacht, Germany
, Technical Report No. GKSS/WMS/01/08.
24.
ESIS P2-92,
1992
, ESIS Procedure for Determining the Fracture Behaviour of Materials, European Structural Integrity Society.
25.
Sherry
,
A. H.
,
Hooton
,
D. G.
,
Beardsmore
,
D. W.
, and
Lidbury
,
D. P. G.
,
2005
, “
Material Constraint Parameters for the Assessment of Shallow Defects in Structural Components—Part II: Constraint-Based Assessment of Shallow Defects
,”
Eng. Fract. Mech.
,
72
(
15
), pp.
2396
2415
.10.1016/j.engfracmech.2004.12.010
26.
Cicero
,
S.
, and
Ainsworth
,
R. A.
,
2005
, “
The Treatment of Constraint Effects in Integrity Evaluations
,”
ASME
Paper No. OMAE2005-67567. 10.1115/OMAE2005-67567
27.
Cicero
,
S.
,
Gutiérrez-Solana
,
F.
, and
Álvarez
,
J. A.
,
2008
, “
Structural Integrity Assessment of Components Subject to Low Constraint Conditions
,”
Eng. Fract. Mech.
,
75
(
10
), pp.
3038
3059
.10.1016/j.engfracmech.2007.12.013
28.
Williams
,
M. L.
,
1957
, “
On the Stress Distribution at the Base of a Stationary Crack
,” ASME J. Appl. Mech.,
24
(1), pp.
109
114
. Available at: http://resolver.caltech.edu/CaltechAUTHORS:20140729-122058948
29.
Betegon
,
C.
, and
Hancock
,
J. W.
,
1991
, “
Two Parameter Characterization of Elastic–Plastic Crack Tip Fields
,”
ASME J. Appl. Mech.
,
58
(
1
), pp.
104
110
.10.1115/1.2897135
You do not currently have access to this content.