This work addresses an experimental investigation on the cleavage fracture behavior of an ASTM A285 Grade C pressure vessel steel. One purpose of this study is to enlarge previously reported work on mechanical and fracture properties for this class of steel to provide a more definite database for use in structural and defect analyses of pressurized components, including pressure vessels and storage tanks. Another purpose is to determine the reference temperature, T0, derived from the Master curve methodology which defines the dependence of fracture toughness with temperature for the tested material. Fracture toughness testing conducted on single edge bend SE(B) specimens in three-point loading extracted from an A285 Grade C pressure vessel steel plate provides the cleavage fracture resistance data in terms of the J-integral and crack tip opening displacement (CTOD) at cleavage instability, Jc and δc. Additional tensile and conventional Charpy tests produce further experimental data which serve to characterize the mechanical behavior of the tested pressure vessel steel. The experimental results reveal a strong effect of specimen geometry on Jc and δc-values associated with large scatter in the measured values of cleavage fracture toughness. Overall, the present investigation, when taken together with previous studies, provides a fairly extensive body of experimental results which describe in detail the fracture behavior of an ASTM A285 Grade C pressure vessel steel.

References

References
1.
Hansen
,
D. A.
, and
Puyear
,
R. B.
,
1996
,
Materials Selection for Hydrocarbon and Chemical Plants
,
Marcel Dekker, Inc.
,
New York
.
2.
ASM International
,
2002
,
ASM Handbook—Volume 11: Failure Analysis and Prevention
, Vol.
12
,
ASM International
,
Materials Park, OH
.
3.
Bednar
,
H. H.
,
1991
,
Pressure Vessel Design Handbook
,
Krieger Publishing
,
Malabar, FL
.
4.
American Society for Testing and Materials
,
2012
, Standard Specification for Pressure Vessel Plates, Carbon Steel, Low- and Intermediate-Tensile Strength, ASTM A285.
5.
Duncan
,
A. J.
,
Subramanian
,
K. H.
,
Sindelar
,
R. L.
,
Miller
,
K.
,
Reynolds
,
A. P.
, and
Chao
,
Y. J.
,
2002
, “
Development of Mechanical Properties Database of A285 Steel for Structural Analysis of Waste Tanks
,”
Fatigue and Fracture Mechanics
,
R.
Chona
, ed., Vol.
32
,
American Society for Testing and Materials
,
Philadelphia
, pp.
399
409
.
6.
Hutchinson
,
J. W.
,
1983
, “
Fundamentals of the Phenomenological Theory of Nonlinear Fracture Mechanics
,”
ASME J. Appl. Mech.
,
50
(
4b
), pp.
1042
1051
.10.1115/1.3167187
7.
Anderson
,
T. L.
,
2005
,
Fracture Mechanics: Fundaments and Applications
,
3rd ed.
,
CRC
,
Boca Raton, FL
.
8.
Zerbst
,
U.
,
Ainsworth
,
R. A.
, and
Schwalbe
,
K.-H.
,
2000
, “
Basic Principles of Analytical Flaw Assessment Methods
,”
Int. J. Pressure Vessels Pip.
,
77
(14–15), pp.
855
867
.10.1016/S0308-0161(01)00008-4
9.
British Institution
,
2013
, Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures, BS 7910.
10.
American Petroleum Institute
,
2007
, Fitness-for-Service, API RP-579-1/ASME FFS-1.
11.
Kanninen
,
M. F.
, and
Popelar
,
C. H.
,
1985
,
Advanced Fracture Mechanics
,
Oxford University
,
New York
.
12.
Cravero
,
S.
, and
Ruggieri
,
C.
,
2007
, “
Further Developments in J Evaluation Procedure for Growing Cracks Based on LLD and CMOD Data
,”
Int. J. Fract.
,
148
(4), pp.
347
400
.10.1007/s10704-008-9211-9
13.
Ruggieri
,
C.
,
2012
, “
Further Results in J and CTOD Estimation Procedures for SE(T) Fracture Specimens—Part I: Homogeneous Materials
,”
Eng. Fract. Mech.
,
79
, pp.
245
265
.10.1016/j.engfracmech.2011.11.003
14.
American Society for Testing and Materials
,
1996
, Test Method for J-Integral Characterization of Fracture Toughness, ASTM E1737-96.
15.
American Society for Testing and Materials
,
2011
, Standard Test Method for Measurement of Fracture Toughness, ASTM E1820-2011.
16.
Zhu
,
X. K.
,
Leis
,
B. N.
, and
Joyce
,
J. A.
,
2008
, “
Experimentation Estimation of J-R Curves From Load-CMOD Record for SE(B) Specimens
,”
J. ASTM Int.
,
5
(
5
), p.
JAI101532
. 10.1520/JAI101532
17.
Zhu
,
X. K.
, and
Joyce
,
J. A.
,
2012
, “
Review of Fracture Toughness (G, K, J, CTOD, CTOA) Testing and Standardization
,”
Eng. Fract. Mech.
,
86
, pp.
1
46
.10.1016/j.engfracmech.2012.02.001
18.
Wallin
,
K.
,
1991
, “
Fracture Toughness Transition Curve Shape for Ferritic Structural Steels
,”
Fracture of Engineering Materials and Structures
, S. T. Teoh and K. H. Lee, eds,
Elsevier Applied Science, Singapore
, pp.
83
88
.
19.
Wallin
,
K.
,
1993
, “
Irradiation Damage Effects on the Fracture Toughness Transition Curve Shape for Reactor Pressure Vessel Steels
,”
Int. J. Pressure Vessels Pip.
,
55
(1), pp.
61
79
.10.1016/0308-0161(93)90047-W
20.
Wallin
,
K.
,
2002
, “
Master Curve Analysis of the Euro Fracture Toughness Dataset
,”
Eng. Fract. Mech.
,
69
(4), pp.
451
481
.10.1016/S0013-7944(01)00071-6
21.
American Society for Testing and Materials
,
2013
, Standard Test Method for Determination of Reference Temperature, T0, for Ferritic Steels in the Transition Range, ASTM E1921-13a.
22.
Tada
,
H.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
,
2000
,
The Stress Analysis of Cracks Handbook
,
3rd ed.
,
American Society of Mechanical Engineers
, New York.
23.
Souza
,
R. F.
, and
Ruggieri
,
C.
, “
Revised η-Factors and J-CTOD Relationships for SE(B) Fracture Specimens Including 3-D Effects and Implications for Fracture Toughness Measurements
,”
Mater. Perform. Charact.
(submitted).
24.
Kirk
,
M. T.
, and
Dodds
,
R. H.
,
1993
, “
J and CTOD Estimation Equations for Shallow Cracks in Single Edge Notch Bend Specimens
,”
J. Test. Eval.
,
21
(4), pp.
228
238
.10.1520/JTE11948J
25.
Shih
,
C. F.
,
1981
, “
Relationship Between the J-integral and the Crack Opening Displacement for Stationary and Extending Cracks
,”
J. Mech. Phys. Solids
,
29
(4), pp.
305
326
.10.1016/0022-5096(81)90003-X
26.
Mann
,
N. R.
,
Schafer
,
R. E.
, and
Singpurwalla
,
N. D.
,
1974
,
Methods for Statistical Analysis of Reliability and Life Data
,
Wiley
,
New York
.
27.
American Society for Testing and Materials
,
2011
, Standard Test Methods for Tension Testing of Metallic Materials, ASTM E8-11.
28.
American Society for Testing and Materials
,
2007
, Standard Test Method for Notched Bar Impact Testing of Metallic Materials, ASTM E23-07.
29.
EricksonKirk
,
M. T.
,
Shaikh
,
A.
, and
EricksonKirk
,
M. A.
,
2008
, “
Insights and Observations Arising From Curve-Fitting the Charpy V-Notch and Tensile Data Contained Within the United States Light Water Reactor Surveillance Database
,”
ASME PVP 2008 Pressure Vessel and Piping Division Conference, American Society of Mechanical Engineers
,
Chicago, IL
.
30.
Wallin
,
K.
,
1984
, “
The Scatter in KIc Results
,”
Eng. Fract. Mech.
,
19
(6), pp.
1085
1093
.10.1016/0013-7944(84)90153-X
31.
Hahn
,
G. T.
,
1984
, “
The Influence of Microstructure on Brittle Fracture Toughness
,”
Metall. Trans. A
,
15
(6), pp.
947
959
.10.1007/BF02644685
32.
Ruggieri
,
C.
, and
Dodds
,
R. H.
, “
Micromechanics Modeling of Cleavage Fracture in Ferritic Steels: A Review and Exploration of Plastic Strain Effects
,”
Eng. Fract. Mech.
(submitted).
33.
Ruggieri
,
C.
, and
Dodds
,
R. H.
, “
A Weibull Stress Model Incorporating the Coupling Effects of Constraint Loss and Plastic Strain in Cleavage Fracture Predictions
,”
Eng. Fract. Mech.
(submitted).
You do not currently have access to this content.