A semi-analytical method is developed to investigate the dynamic interaction of two fluid-filled circular pipelines in a porous elastic fluid-saturated medium subjected to harmonic plane waves. The harmonic equations based on Biot's theory are reduced by Helmholtz decomposition theorem. The potentials in the fluid-saturated medium, in the linings, and inside the pipelines are expressed by wave function expansion method. The addition theorem for cylindrical wave functions is employed to obtain the closed-form solution in the form of infinite series. The hoop stress amplitudes around the pipelines are evaluated and discussed for the representative values of parameters characterizing the model. The effects of the proximity of two pipelines, the geometrical and material properties of linings, and the incident wave frequency on the dynamic stress around the pipelines are examined.

References

References
1.
Biot
,
M. A.
,
1956
, “
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low Frequency Range
,”
J. Acoust. Soc. Am.
,
28
(
2
), pp.
168
178
.10.1121/1.1908239
2.
Senjuntichat
,
T.
, and
Rajapakse
,
R. D.
,
1993
, “
Transient Response of a Circular Cavity in a Poroelastic Medium
,”
Int. J. Numer. Anal. Methods Geomech.
,
17
, pp.
357
383
.10.1002/nag.1610170602
3.
Krutin
,
V. N.
,
Markov
,
M. G.
, and
Yumatov
,
A. Y.
,
1988
, “
Normal Waves in a Fluid-Filled Cylindrical Cavity Located in a Saturated Porous Medium
,”
J. Appl. Math. Mech.
,
52
, pp.
67
74
.10.1016/0021-8928(88)90062-7
4.
Jiang
,
L. F.
,
Zhou
,
X. L.
, and
Wang
,
J. H.
,
2009
, “
Scattering of a Plane Wave by a Lined Cylindrical Cavity in a Poroelastic Half-Plane
,”
Comput. Geotech.
,
36
, pp.
773
786
.10.1016/j.compgeo.2009.01.001
5.
Stamos
,
A. A.
,
Theodorakopoulos
,
D. D.
, and
Beskos
,
D. E.
,
1995
, “
Harmonic Wave Response of Tunnels in Poroelastic Saturated Soil
,”
Adv. Earthquake Eng.
,
2
, pp.
101
112
. Available at: http://trid.trb.org/view.aspx?id=498489
6.
Esmaeili
,
M.
,
Vahdani
,
S.
, and
Noorzad
,
A.
,
2006
, “
Dynamic Response of Lined Circular Tunnel to Plane Harmonic Waves
,”
Tunnelling Underground Space Technol.
,
21
, pp.
511
519
.10.1016/j.tust.2005.10.002
7.
Kattis
,
S. E.
,
Beskos
,
D. E.
, and
Cheng
,
A. D.
,
2003
, “
2D Dynamic Response of Unlined and Lined Tunnels in Poroelastic Soil to Harmonic Body Wave
,”
Earthquake Eng. Struct. D
,
32
, pp.
97
110
.10.1002/eqe.216
8.
Hasheminejad
,
S. M.
, and
Avazmohammadi
,
R.
,
2008
, “
Dynamic Stress Concentrations in Lined Twin Tunnels Within Fluid-Saturated Soil
,”
ASCE J. Eng. Mech.
,
134
, pp.
542
554
.10.1061/(ASCE)0733-9399(2008)134:7(542)
9.
Wang
,
J. H.
,
Zhou
,
X. L.
, and
Lu
,
J. F.
,
2005
, “
Dynamic Stress Concentration Around Elliptic Cavities in Saturated Poroelastic Soil Under Harmonic Plane Waves
,”
Int. J. Solid. Struct.
,
42
, pp.
4295
4310
.10.1016/j.ijsolstr.2005.01.003
10.
Liu
,
G.
,
Xie
,
K.
, and
Zheng
,
R.
,
2010
, “
Thermo-Elastodynamic Response of a Spherical Cavity in Saturated Poroelastic Medium
,”
Appl. Math. Model.
,
34
, pp.
2203
2222
.10.1016/j.apm.2009.10.031
11.
Zhou
,
X. L.
,
Wang
,
J. H.
,
Xu
,
B.
, and
Jiang
,
L. F.
,
2009
, “
Dynamic Response of a Circular Pipeline in a Poroelastic Medium
,”
Mech. Res. Commun.
,
36
, pp.
898
905
.10.1016/j.mechrescom.2009.08.002
12.
Bourbie
,
T.
,
Coussy
,
O.
, and
Zinszner
,
B. E.
,
1987
,
Acoustics of Porous Media
,
Gulf Publishing
,
Houston, TX
.
13.
Johnson
,
D. L.
,
Koplik
,
J.
, and
Dashen
,
R.
,
1987
, “
Theory of Dynamic Permeability and Tortuosity in Fluid-Saturated Porous Media
,”
J. Fluid. Mech.
,
76
, pp.
379
402
.10.1017/S0022112087000727
You do not currently have access to this content.