The paper presents computational results of 3D flow past a cylinder forced to oscillate: (a) transversely with respect to a uniform stream and (b) both transversely and in-line with respect to a uniform stream, following a figure-eight trajectory. For a flow from left to right the figure-eight is traversed counterclockwise in the upper half-plane. Direct numerical simulation (DNS) of the Navier–Stokes equations for 3D flow is performed using a spectral element code. Computations are carried out for a Reynolds number equal to 400, at a transverse oscillation frequency equal to the natural frequency of the Kármán vortex street. For both oscillation modes, the transverse oscillation amplitude is varied from 0 to 0.60 cylinder diameters. The forces on the cylinder are calculated and related to flow structure in the wake. The results indicate that, in general, the presence of in-line oscillation increases the magnitude of forces acting on the cylinder, as well as the power transfer from the flow to the structure. Flow visualizations indicate that, for the figure-eight mode, low-amplitude forcing tends to reduce the wake three-dimensionality. However, at high oscillation amplitudes, the wake structure is found to become more complex at increasing amplitude.

References

References
1.
Sarpkaya
,
T.
,
2004
, “
A Critical Review of the Intrinsic Nature of Vortex-Induced Vibrations
,”
J. Fluids Struct.
,
19
(
4
), pp.
389
447
.10.1016/j.jfluidstructs.2004.02.005
2.
Bearman
,
P. W.
,
1984
, “
Vortex Shedding From Oscillating Bluff Bodies
,”
Annu. Rev. Fluid Mech.
,
16
, pp.
195
222
.10.1146/annurev.fl.16.010184.001211
3.
Bearman
,
P. W.
,
2011
, “
Circular Cylinder Wakes and Vortex-Induced Vibrations
,”
J. Fluids Struct.
,
27
(5–6), pp.
648
658
.10.1016/j.jfluidstructs.2011.03.021
4.
Williamson
,
C. H. K.
, and
Govardhan
,
R.
,
2004
, “
Vortex-Induced Vibrations
,”
Annu. Rev. Fluid Mech.
,
36
, pp.
413
455
.10.1146/annurev.fluid.36.050802.122128
5.
Williamson
,
C. H. K.
, and
Govardhan
,
R.
,
2008
, “
A Brief Review of Recent Results in Vortex-Induced Vibrations
,”
J. Wind Eng. Ind. Aerodyn.
,
96
(
6–7
), pp.
713
735
.10.1016/j.jweia.2007.06.019
6.
Peppa
,
S.
,
Kaiktsis
,
L.
, and
Triantafyllou
,
G. S.
,
2010
, “
The Effect of In-Line Oscillation on the Forces of a Cylinder Vibrating in a Steady Flow
,”
ASME
Paper No. FEDSM-ICNMM2010-30054. 10.1115/FEDSM-ICNMM2010-30054
7.
Koopman
,
G. H.
,
1967
, “
The Vortex Wakes of Vibrating Cylinders at Low Reynolds Numbers
,”
J. Fluid Mech.
,
28
(3), pp.
501
512
.10.1017/S0022112067002253
8.
Griffin
,
O. M.
,
1971
, “
The Unsteady Wake of an Oscillating Cylinder at Low Reynolds Number
,”
ASME J. Appl. Mech.
,
38
(
4
), pp.
729
738
.10.1115/1.3408948
9.
Gioria
,
R. S.
,
Jabardo
,
P. J. S.
,
Carmo
,
B. S.
, and
Meneghini
,
J. R.
,
2009
, “
Floquet Stability Analysis of the Flow Around an Oscillating Cylinder
,”
J. Fluids Struct.
,
25
(
4
), pp.
676
686
.10.1016/j.jfluidstructs.2009.01.004
10.
Jeon
,
D.
, and
Gharib
,
M.
,
2001
, “
On Circular Cylinders Undergoing Two-Degree-of-Freedom Forced Motions
,”
J. Fluids Struct.
,
15
(
3–4
), pp.
533
541
.10.1006/jfls.2000.0365
11.
Kaiktsis
,
L.
,
Triantafyllou
,
G. S.
, and
Özbas
,
M.
,
2007
, “
Excitation, Inertia and Drag Forces on a Cylinder Vibrating Transversely to a Steady Flow
,”
J. Fluids Struct.
,
23
(
1
), pp.
1
21
.10.1016/j.jfluidstructs.2006.08.006
12.
Williamson
,
C. H. K.
, and
Roshko
,
A.
,
1988
, “
Vortex Formation in the Wake of an Oscillating Cylinder
,”
J. Fluids Struct.
,
2
(
4
), pp.
355
381
.10.1016/S0889-9746(88)90058-8
13.
Nek5000
.” Available at: http://nek5000.mcs.anl.gov
14.
Karniadakis
,
G. E.
, and
Sherwin
,
S. J.
,
2005
,
Spectral/hp Methods for Computational Fluid Dynamics
, Oxford University Press, New York.
15.
Deville
,
M.
,
Fischer
,
P. F.
, and
Mund
,
E.
,
2004
,
High-Order Methods for Incompressible Fluid Flow
,
Cambridge University
,
Cambridge, UK
.
16.
Maday
,
Y.
,
Patera
,
A. T.
, and
Rønquist
,
E. M.
,
1990
, “
An Operator-Integration-Factor Splitting Method for Time-Dependent Problems: Application to Incompressible Fluid Flow
,”
J. Sci. Comput.
,
5
(
4
), pp.
263
292
.10.1007/BF01063118
17.
Peppa
,
S.
,
2012
, “
Computational Study of Flow-Structure Interaction
,” Ph.D. thesis, School of Naval Architecture and Marine Engineering, NTUA, Athens, Greece.
18.
Henderson
,
R. D.
,
1995
, “
Details of the Drag Curve Near the Onset of Vortex Shedding
,”
Phys. Fluids
,
7
(
9
), pp.
2102
2104
.10.1063/1.868459
19.
Wieselberger
,
C.
,
1921
, “
Neuere Festellungen über die Gesetze des Flüssigkeits- und Luftwiderstands
,”
Physikalische Zeitschrift
,
22
, pp.
321
382
.
20.
Vandiver
,
J. K.
,
1983
, “
Drag Coefficients of Long Flexible Cylinders
,”
Proceedings of the Offshore Technology Conference
, Houston, TX, Paper No. 4490, pp. 405–414.
21.
Wu
,
J.
,
Sheridan
,
J.
,
Soria
,
J.
, and
Welsh
,
M. C.
,
1994
, “
An Experimental Investigation of Streamwise Vortices in the Wake of a Bluff Body
,”
J. Fluids Struct.
,
8
(
7
), pp.
621
635
.10.1016/S0889-9746(94)90080-9
22.
Williamson
,
C. H. K.
,
1996
, “
Vortex Dynamics in the Cylinder Wake
,”
Annu. Rev. Fluid Mech.
,
28
, pp.
477
539
.10.1146/annurev.fl.28.010196.002401
23.
Thompson
,
M.
,
Hourigan
,
K.
, and
Sheridan
,
J.
,
1996
, “
Three-Dimensional Instabilities in the Wake of a Circular Cylinder
,”
Exp. Therm. Fluid Sci.
,
12
(
2
), pp.
190
196
.10.1016/0894-1777(95)00098-4
You do not currently have access to this content.