The integrity of a reactor pressure vessel (RPV) related to pressurized thermal shocks (PTSs) has been extensively studied. This paper introduces the method of using fracture mechanics for the integrity analysis of a RPV subjected to PTS transients. A 3-D finite element (FE) model is used to perform thermal and fracture mechanics analyses by considering both elastic and elastic–plastic material models. The results show that the linear elastic analysis leads to a more conservative result than the elastic–plastic analysis. The variation of the T-stress and Q-stress (crack tip constraint loss) of a surface crack in a RPV subjected to PTSs is studied. A shallow crack is assumed in the RPV and the corresponding constraint effect on fracture toughness of the material is quantified by the K–T method. The safety margin of the RPV is larger based on the K–T approach than based only on the K approach. The J–Q method with the modified boundary layer formulation (MBL) is used for the crack tip constraint analysis by considering elastic–plastic material properties. For all transient times, the real stress is lower than that calculated from small scale yielding (SSY) due to the loss of crack tip constraint.

References

References
1.
Qian
,
G.
, and
Niffenegger
,
M.
,
2013
, “
Procedures, Methods and Computer Codes for the Probabilistic Assessment of Reactor Pressure Vessels Subjected to Pressurized Thermal Shocks
,”
Nucl. Eng. Des.
,
258
, pp.
35
50
.10.1016/j.nucengdes.2013.01.030
2.
Qian
,
G.
,
Gonzalez-Albuixech
, V
. F.
, and
Niffenegger
,
M.
,
2014
, “
Probabilistic PTS Analysis of a Reactor Pressure Vessel by Considering Realistic Crack Distributions
,”
Nucl. Eng. Des.
,
270
, pp.
312
324
.10.1016/j.nucengdes.2013.12.062
3.
Bass
,
B. R.
,
Pugh
,
C. E.
,
Sievers
,
J.
, and
Schulz
,
H.
,
1999
, “
International Comparative Assessment Study of Pressurized Thermal Shock in Reactor Pressure Vessel (NUREG/CR-6651)
,” NRC, Washington, DC.
4.
Taylor
,
N.
,
Nilsson
,
K.
,
Minnebo
,
P.
,
Bass
,
B.
,
McAfee
,
W.
,
Williams
,
P.
,
Swan
,
D.
, and
Siegele
,
D.
,
2005
, “
NESC IV Project: An Investigation of the Transferability of Master Curve Technology to Shallow Flaws in Reactor Pressure Vessel Applications
,” European Commission, Joint Research Center, EUR 21846 EN.
5.
Faidy
,
C.
,
Chapuliot
,
S.
,
Dickson
,
T.
,
Pistora
, V
.
, and
Onazawa
,
K.
,
2010
, “
PROSIR: Probabilistic Structural Integrity of a PWR Reactor Pressure Vessel
,” Final report, European Commission, General for Research, Euratom.
6.
Moinereau
,
D.
, and
Bezdikian
,
G.
,
2008
, “
Structural Margin Improvements in Age-embrittled RPVs With Load History Effects (SMILE)
,” European Commission, General for Research, Euratom, Paper No. FIKS-CT2001-00131.
7.
Lidbury
,
D.
, and
Assurance
,
S.
,
2006
, “
Validation of Constraint-Based Assessment Methodology in Structural Integrity (VOCALIST)
,” European Commission, General for Research, Euratom, Paper No. FIKS CT-2000-00090.
8.
Niffenegger
,
M.
, and
Reichlin
,
K.
,
2012
, “
The Proper Use of Thermal Expansion Coefficients in Finite Element Calculations
,”
Nucl. Eng. Des.
,
243
, pp.
356
359
.10.1016/j.nucengdes.2011.12.006
9.
Shum
,
D. K.
,
Theiss
,
T. J.
, and
Rolfe
,
S. T.
,
1994
, “
Application of J-Q Fracture Methodology to the Analysis of Pressurized Thermal Shock in Reactor Pressure Vessels
,”
Fracture Mechanics
, J. D. Landes, D. E. McCabe, and J. A. M. Boulet, eds., Vol.
24
, ASTM STP 1207, pp.
152
168
.
10.
Anderson
,
T. L.
,
2005
,
Fracture Mechanics-Fundamentals and Applications
, 3rd ed., CRC Press, Boca Raton, FL.
11.
Wallin
,
K.
,
2001
, “
Quantifying Tstress Controlled Constraint by the Master Curve Transition Temperature T0
,”
Eng. Fract. Mech.
,
68
(3), pp.
303
328
.10.1016/S0013-7944(00)00067-9
12.
O'Dowd
,
N. P.
, and
Shih
,
C. F.
,
1991
, “
Family of Crack-Tip Fields Characterized by a Triaxiality Parameter-I. Structure of Fields
,”
J. Mech. Phys. Solids
,
39
(8), pp.
939
963
.10.1016/0022-5096(91)90049-T
13.
O'Dowd
,
N. P.
,
1992
, “
Shih CF. Family of Crack-Tip Fields Characterized by a Triaxiality Parameter-II. Fracture Applications
,”
J. Mech. Phys. Solids
,
40
(5), pp.
939
963
.10.1016/0022-5096(92)90057-9
14.
Chao
,
Y. J.
,
Zhu
,
X. K.
,
Kim
,
Y.
,
Lam
,
P. S.
,
Pechersky
,
M. J.
, and
Morgan
,
M. J.
,
2004
, “
Characterization of Crack-Tip Field and Constraint for Bending Specimens Under Large Scale Yielding
,”
Int. J. Fract.
,
127
(3), pp.
283
302
.10.1023/B:FRAC.0000036849.12397.6c
15.
Betegon
,
C.
, and
Hancock
,
J. W.
,
1991
, “
Two-Parameter Characterisation of Elastic-Plastic Crack-Tip Fields
,”
ASME J. Appl. Mech.
,
58
(1), pp.
104
110
.10.1115/1.2897135
16.
Du
,
Z.-Z.
, and
Hancock
,
J. W.
,
1991
, “
The Effect of Non-Singular Stresses on Crack Tip Constraint
,”
J. Mech. Phys. Solids
,
39
(4), pp.
555
567
.10.1016/0022-5096(91)90041-L
17.
Williams
,
M. L.
,
1957
, “
On the Stress Distribution at the Base of a Stationary Crack
,”
ASME J. Appl. Mech.
,
24
(1), pp.
109
114
.
18.
Bilby
,
B. A.
,
Cardew
,
G. E.
,
Goldthorpe
,
M. R.
, and
Howard
,
I. C.
,
1986
, “
A Finite Element Investigation of the Effect of Specimen Geometry on the Fields of Stress and Strain at the Tips of Stationary Cracks
,” in
Size Effects in Fracture
, Mechanical Engineering Publications Limited, London, UK, pp.
37
46
.
19.
Dodds
,
R. H.
,
Anderson
,
T. L.
, and
Kirk
,
M. T.
,
1991
, “
A Framework to Correlate a/W Ratio Effects on Elastic-Plastic Fracture Toughness (Jc)
,”
Int. J. Fract.
,
48
(1), pp.
1
22
.10.1007/BF00012499
20.
Abaqus 6.11 Manual, Version 6.11, Hibbitt, Karlsson & Sorensen, Inc.,
2011
.
You do not currently have access to this content.