This paper describes a new extension of the linear matching method (LMM) for the direct evaluation of cyclic behavior with creep effects of structures subjected to a general load condition in the steady cyclic state, with the new implementation of the cyclic hardening model and time hardening creep constitutive model. A benchmark example of a Bree cylinder and a more complicated three-dimensional (3D) plate with a center hole subjected to cyclic thermal load and constant mechanical load are analyzed to verify the applicability of the new LMM to deal with the creep fatigue damage. For both examples, the stabilized cyclic responses for different loading conditions and dwell time periods are obtained and validated. The effects of creep behavior on the cyclic responses are investigated. The new LMM procedure provides a general purpose technique, which is able to generate both the closed and nonclosed hysteresis loops depending upon the applied load condition, providing details of creep strain and plastic strain range for creep and fatigue damage assessments with creep fatigue interaction.

References

References
1.
Melan
,
E.
,
1936
, “
Theorie Statisch Unbestimmter Systeme aus Ideal-Plastischem Bastoff. Sitzungsberichte der Akademie der Wissenschaft
,”
Wien Abtiia
,
145
, pp.
195
218
.
2.
Bree
,
J.
,
1967
, “
Elastic-Plastic Behaviour of Thin Tubes Subjected to Internal Pressure and Intermittent High-Heat Fluxes With Application to Fast-Nuclear-Reactor Fuel Elements
,”
J. Strain Anal.
,
2
(3)
, pp.
226
238
.10.1243/03093247V023226
3.
Bree
,
J.
,
1968
, “
Incremental Growth Due to Creep and Plastic Yielding of Thin Tubes Subjected to Internal Pressure and Cyclic Thermal Stresses
,”
J. Strain Anal.
,
3
(2)
, pp.
122
127
.10.1243/03093247V032122
4.
ABAQUS
,
2007
, “
User's Manual
,” Version 6.7.
5.
Nguyen-Tajan
,
T. M. I.
,
Pommier
,
B.
,
Maitournam
,
H.
,
Houari
,
M.
,
Verger
,
L.
,
Du
,
Z. Z.
, and
Snyman
,
M.
,
2003
, “
Determination of the Stabilized Response of a Structure Undergoing Cyclic Thermal–Mechanical Loads by a Direct Cyclic Method
,”
ABAQUS Users’ Conference Proceedings
.
6.
Chen
,
H. F.
, and
Ponter
,
A. R. S.
,
2006
, “
Linear Matching Method on the Evaluation of Plastic and Creep Behaviours for Bodies Subjected to Cyclic Thermal and Mechanical Loading
,”
Int. J. Num. Methods Eng.
,
68
(1)
, pp.
13
32
.10.1002/nme.1693
7.
Chen
,
H. F.
,
2010
, “
Lower and Upper Bound Shakedown Analysis of Structures With Temperature-Dependent Yield Stress
,”
ASME J. Pressure Vessel Technol.
,
132
(
1
), p.
011202
.10.1115/1.4000369
8.
Chen
,
H. F.
, and
Ponter
,
A. R. S.
,
2010
, “
A Direct Method on the Evaluation of Ratchet Limit
,”
ASME J. Pressure Vessel Technol.
,
132
(
4
), p.
041202
.10.1115/1.4001524
9.
Mackenzie
,
D.
,
Boyle
,
J. T.
,
Hamilton
,
R.
, and
Shi
,
J.
,
1996
, “
Elastic Compensation Method in Shell-Based Design by Analysis
,”
Proceedings of the 1996 ASME Pressure Vessels and Piping Conference
, Vol.
338
, pp.
203
208
.
10.
Seshadri
,
R.
,
2005
, “
Inelastic Evaluation of Mechanical and Structural Components Using the Generalized Local Stress Strain Method of Analysis
,”
Nucl. Eng. Des.
,
153
(2–3)
, pp.
287
303
.10.1016/0029-5493(95)90020-9
11.
Weichert
,
D.
, and
Maier
,
G.
,
2000
,
Inelastic Analysis of Structures Under Variable Loads: Theory and Engineering Applications
,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
.
12.
Staat
,
M.
, and
Heitzer
,
M.
,
2001
, “
LISA a European Project for FEM-Based Limit and Shakedown Analysis
,”
Nucl. Eng. Des.
,
206
(2–3)
, pp.
151
166
.10.1016/S0029-5493(00)00415-5
13.
Ponter
,
A. R. S.
, and
Chen
,
H. F.
,
2001
, “
A Minimum Theorem for Cyclic Load in Excess of Shakedown, With Application to the Evaluation of a Ratchet Limit
,”
Eur. J. Mech. Appl. Solids
,
20
(4)
, pp.
539
553
.10.1016/S0997-7538(01)01161-5
14.
Tipping
,
D. J.
,
2007
, “
The Linear Matching Method: A Guide to the ABAQUS User Subroutines
,” British Energy Generation, E/REP/BBGB/0017/GEN/07.
15.
Ainsworth
,
R. A.
, ed.,
2003
,
R5: Assessment Procedure for the High Temperature Response of Structures
, Vol.
3
,
British Energy Generation Ltd.
, UK.
16.
Chen
,
H. F.
, and
Ponter
,
A. R. S.
,
2005
, “
Interity Assessment of a 3D Tube Plate Using the Linear Matching Method, Creep Relaxation and Reverse Plasticity
,”
ASME Int. J. Pressure Vessel Technol.
,
82
(2)
, pp.
85
104
.10.1016/j.ijpvp.2004.07.015
17.
Sorkhabi
,
A. H. D. S.
, and
Tahami
,
F.
,
2012
, “
Experimental Study of the Creep Behavior of Parent, Simulated HAZ and Weld Materials for Cold-Drawn 304L Stainless Steel
,”
Eng. Failure Anal.
,
21
, pp.
78
90
.10.1016/j.engfailanal.2011.11.019
18.
Penny
,
R. K.
, and
Marriott
,
D. L.
,
1995
,
Design for Creep
,
2nd ed.
,
Chapman and Hall
,
London, UK
.
19.
Hyde
,
T. H.
, and
Sun
,
W.
,
1998
, “
Creep of Welded Pipes
,”
Proc. ImechE, Part E
,
212
(3), pp.
171
182
.
You do not currently have access to this content.