In this study, for the hard-facing of spring-loaded pressure relief valve seats, the residual stress distributions after the tungsten inert gas welding, (TIG) postwelded heat treatment and subsequent surface turning were investigated. The heat input parameters of welding were calibrated using an infrared imaging and thermocouples. The residual stress distributions were computed using three-dimensional finite element model. The neutron diffraction approach was employed to verify the finite element calculation. It is found that, the surface temperature during hard-facing welding shows a double ellipsoidal shape with the highest value of around 1570 °C. The high residual stress zones are located exactly under the welded joint except a slight deviation in the hoop direction. The magnitudes of tensile residual stresses in the three directions increase with their corresponding locations from the root of the joint into the base metal. The residual stresses in all of the three directions decrease significantly after the heat treatment. After surface turning, the residual stresses are tensile except for those close to the inner surface that are compressive in axial and radial directions.

References

References
1.
Flynn
,
C. B.
,
1979
,
Three Mile Island Telephone Survey: Preliminary Report on Procedures and Findings
,
Mountain West Research, Inc.
,
Tempe, AZ
.
2.
Etsion
,
I.
,
Kligerman
,
Y.
, and
Halperin
,
G.
,
1999
, “
Analytical and Experimental Investigation of Laser-Textured Mechanical Seal Faces
,”
Tribol. Trans.
,
42
(
3
), pp.
511
516
.10.1080/10402009908982248
3.
Buchely
,
M.
,
Gutierrez
,
J.
,
Leon
,
L.
, and
Toro
,
A.
,
2005
, “
The Effect of Microstructure on Abrasive Wear of Hardfacing Alloys
,”
Wear
,
259
(
1
), pp.
52
61
.10.1016/j.wear.2005.03.002
4.
Cary
,
H. B.
, and
Helzer
,
S.
,
2005
, “
Modern Welding Technology
,” Prentice–Hall, Englewood Cliffs, NJ.
5.
Muránsky
,
O.
,
Hamelin
,
C. J.
,
Smith
,
M. C.
,
Bendeich
,
P. J.
, and
Edwards
,
L.
,
2012
, “
The Effect of Plasticity Theory on Predicted Residual Stress Fields in Numerical Weld Analyses
,”
Comput. Mater. Sci.
,
54
(
0
), pp.
125
134
.10.1016/j.commatsci.2011.10.026
6.
Muránsky
,
O.
,
Smith
,
M. C.
,
Bendeich
,
P. J.
,
Holden
,
T. M.
,
Luzin
,
V.
,
Martins
,
R. V.
, and
Edwards
,
L.
,
2012
, “
Comprehensive Numerical Analysis of a Three-Pass Bead-in-Slot Weld and Its Critical Validation Using Neutron and Synchrotron Diffraction Residual Stress Measurements
,”
Int. J. Solids Struct.
,
49
(
9
), pp.
1045
1062
.10.1016/j.ijsolstr.2011.07.006
7.
Flores-Johnson
,
E. A.
,
Muránsky
,
O.
,
Hamelin
,
C. J.
,
Bendeich
,
P. J.
, and
Edwards
,
L.
,
2012
, “
Numerical Analysis of the Effect of Weld-Induced Residual Stress and Plastic Damage on the Ballistic Performance of Welded Steel Plate
,”
Comput. Mater. Sci.
,
58
, pp.
131
139
.10.1016/j.commatsci.2012.02.009
8.
Deng
,
D.
, and
Murakawa
,
H.
,
2006
, “
Prediction of Welding Residual Stress in Multi-Pass Butt-Welded Modified 9Cr–1Mo Steel Pipe Considering Phase Transformation Effects
,”
Comput. Mater. Sci.
,
37
(
3
), pp.
209
219
.10.1016/j.commatsci.2005.06.010
9.
Deng
,
D.
, and
Murakawa
,
H.
,
2006
, “
Numerical Simulation of Temperature Field and Residual Stress in Multi-Pass Welds in Stainless Steel Pipe and Comparison With Experimental Measurements
,”
Comput. Mater. Sci.
,
37
(
3
), pp.
269
277
.10.1016/j.commatsci.2005.07.007
10.
Deng
,
D.
,
2009
, “
FEM Prediction of Welding Residual Stress and Distortion in Carbon Steel Considering Phase Transformation Effects
,”
Comput. Mech.
,
30
, pp.
359
366
.
11.
Liu
,
C.
,
Zhang
,
J.
,
Wu
,
B.
, and
Gong
,
S.
,
2012
, “
Numerical Investigation on the Variation of Welding Stresses After Material Removal From a Thick Titanium Alloy Plate Joined by Electron Beam Welding
,”
Mater. Des.
,
34
, pp.
609
617
.10.1016/j.matdes.2011.05.014
12.
Akbarzadeh
,
I.
,
Sattari-Far
,
I.
, and
Salehi
,
M.
,
2011
, “
Numerical and Experimental Study of the Effect of Short-Term and Long-Term Creep Modeling in Stress Relaxation of a Multi-Pass Welded Austenitic Stainless Steel Pipe
,”
Mater. Sci. Eng., A
,
528
(
4–5
), pp.
2118
2127
.10.1016/j.msea.2010.11.043
13.
Paddea
,
S.
,
Francis
,
J. A.
,
Paradowska
,
A. M.
,
Bouchard
,
P. J.
, and
Shibli
,
I. A.
,
2012
, “
Residual Stress Distributions in a P91 Steel-Pipe Girth Weld Before and After Post Weld Heat Treatment
,”
Mater. Sci. Eng., A
,
534
(
0
), pp.
663
672
.10.1016/j.msea.2011.12.024
14.
Wu
,
A. P.
,
Ren
,
J. L.
,
Peng
,
Z. S.
,
Murakawa
,
H.
, and
Ueda
,
Y.
,
2000
, “
Numerical Simulation for the Residual Stresses of Satellite Hard-Facing on Carbon Steel
,”
J. Mater. Process. Technol.
,
101
(
6
), pp.
70
75
.10.1016/S0924-0136(99)00456-2
15.
Yang
,
Q. X.
,
Yao
,
M.
, and
Park
,
J. K.
,
2004
, “
Numerical Simulations and Measurements of Temperature and Stress Field in Medium-High Carbon Steel Specimen After Hard-Face-Welding
,”
Comput. Mater. Sci.
,
29
(
1
), pp.
37
42
.10.1016/S0927-0256(03)00093-4
16.
Hutchings
,
M. T.
,
Withers
,
P.
,
Holden
,
T.
, and
Lorentzen
,
T.
,
2005
,
Introduction to the Characterization of Residual Stress by Neutron Diffraction
,
Taylor and Francis
,
London
.
17.
ASME
,
2007
, “
Specifications for Welding Rods, Electrodes, and Filler Metals
."
18.
Woo
,
W.
,
Em
,
V.
,
Seong
,
B. S.
,
Shin
,
E.
,
Mikula
,
P.
,
Joo
,
J.
, and
Kang
,
M. H.
,
2011
, “
Effect of Wavelength-Dependent Attenuation on Neutron Diffraction Stress Measurements at Depth in Steels
,”
J. Appl. Crystallogr.
,
44
(
4
), pp.
747
754
.10.1107/S0021889811018899
19.
Woo
,
W.
,
Em
,
V.
,
Mikula
,
P.
,
An
,
G. B.
, and
Seong
,
B. S.
,
2011
, “
Neutron Diffraction Measurements of Residual Stresses in a 50 mm Thick Weld
,”
Mater. Sci. Eng., A
,
528
(
12
), pp.
4120
4124
.10.1016/j.msea.2011.02.009
20.
SIMULIA,
2008
,
abaqus Analysis User's Manual (Version 6.9)
.
21.
Muránsky
,
O.
,
Smith
,
M. C.
,
Bendeich
,
P. J.
, and
Edwards
,
L.
,
2011
, “
Validated Numerical Analysis of Residual Stresses in Safety Relief Valve (SRV) Nozzle Mock-Ups
,”
Comput. Mater. Sci.
,
50
, pp.
2203
2215
.10.1016/j.commatsci.2011.02.031
22.
Lemaitre
,
J.
, and
Chaboche
,
J. L.
,
1994
,
Mechanics of Solid Materials
,"
Cambridge University Press
,
Cambridge
UK.
23.
Goldak
,
J.
,
Chakravarti
,
A.
, and
Bibby
,
M.
,
1984
, “
A New Finite Element Model for Welding Heat Sources
,”
Metall. Mater. Trans. B
,
15
(
2
), pp.
299
305
.10.1007/BF02667333
24.
Alberg
,
H.
, and
Berglund
,
D.
,
2003
, “
Comparison of Plastic, Viscoplastic, and Creep Models When Modelling Welding and Stress Relief Heat Treatment
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
49–50
), pp.
5189
5208
.10.1016/j.cma.2003.07.010
25.
Berglund
,
D.
,
Alberg
,
H.
, and
Runnemalm
,
H.
,
2003
, “
Simulation of Welding and Stress Relief Heat Treatment of an Aero Engine Component
,”
Finite Elements Anal. Des.
,
39
(
9
), pp.
865
881
.10.1016/S0168-874X(02)00136-1
26.
Broek
,
D.
,
1982
,
Elementary Engineering Fracture Mechanics
,
Springer
,
New York
.
27.
Dattoma
,
V.
,
De Giorgi
,
M.
, and
Nobile
,
R.
,
2006
, “
On the Evolution of Welding Residual Stress After Milling and Cutting Machining
,”
Comput. Struct.
,
84
(
29–30
), pp.
1965
1976
.10.1016/j.compstruc.2006.08.008
28.
Saoubi
,
R. M.
,
Outeiro
,
J. C.
,
Changeux
,
B.
,
Lebrun
,
J. L.
, and
Mora
,
A.
,
1999
, “
Residual Stress Analysis in Orthogonal Machining of Standard and Resulfurized AISI 316L Steels
,”
J. Mater. Process. Technol.
,
96
, pp.
225
233
.10.1016/S0924-0136(99)00359-3
29.
Ranganathan
,
S.
,
Senthilvelan
,
T.
, and
Sriram
,
G.
,
2010
, “
Evaluation of Machining Parameters of Hot Turning of Stainless Steel (Type 316) by Applying ANN and RSM
,”
Mater. Manuf. Process.
,
25
(
10
), pp.
1131
1141
.10.1080/10426914.2010.489790
30.
Wu
,
J. Q.
, and
Chen
,
S. F.
,
2007
, “
Discussion of Surface Remaining Stress in Machinery Processing
,”
Coal Mine Mach.
,
28
(
8
), pp.
101
103
.
You do not currently have access to this content.