Industrial glass blowing is an essential stage of manufacturing hollow glass containers, e.g., bottles, jars. A glass preform is brought into a mold and inflated with compressed air until it reaches the mold shape. A simulation model for blowing glass containers based on finite element methods, which adopts a level set method to track the glass–air interfaces, has previously been developed [Giannopapa and Groot, 2007, “A Computer Simulation Model for the Blow–Blow Forming Process of Glass Containers,” Paper No. PVP2007-26408, pp. 79–86; Giannopapa, C. G., 2008, “Development of a Computer Simulation Model for Blowing Glass Containers,” ASME J. Manuf. Sci. Eng., 130(4), p. 041003; Giannopapa and Groot, 2011, “Modeling the Blow–Blow Forming Process in Glass Container Manufacturing: A Comparison Between Computations and Experiments,” ASME J. Fluids Eng., 133(2), p. 021103]. A considerable challenge in glass blowing is the inverse problem: to determine an optimal preform from the desired container shape. In previous work of the authors [Groot et al., 2009, “Numerical Optimisation of Blowing Glass Parison Shapes,” ASME Paper No. PVP2009-77946; Groot et al., 2011, “Development of a Numerical Optimization Method for Blowing Glass Parison Shapes,” ASME J. Manuf. Sci. Eng., 133(1), p. 011010] a numerical method was introduced for optimizing the shape of the preform. The optimization method described the shape of the preform by parametric curves, e.g., Bezier-curves or splines, and employed a modified Levenberg–Marquardt algorithm to find the optimal positions of the control points of the curves. A combined finite difference and Broyden method was used to compute the Jacobian of the residual with respect to changes in the positions of the control points. The objective of this paper is to perform an error analysis of the optimization method previously introduced and to improve its accuracy and performance. The improved optimization method is applied to modeled containers of industrial relevance, which shows its usefulness for practical applications.

References

References
1.
Giannopapa
,
C. G.
,
2008
, “
Development of a Computer Simulation Model for Blowing Glass Containers
,”
ASME J. Manuf. Sci. Eng.
,
130
(
4
), p.
041003
.10.1115/1.2951925
2.
Giannopapa
,
C. G.
, and
Groot
,
J. A. W. M.
,
2011
, “
Modeling the Blow–Blow Forming Process in Glass Container Manufacturing: A Comparison Between Computations and Experiments
,”
ASME J. Fluids Eng.
,
133
(
2
), p.
021103
.10.1115/1.4003559
3.
César de Sá
,
J. M. A.
,
1986
, “
Numerical Modelling of Incompressible Problems in Glass Forming and Rubber Technology
,” Ph.D. thesis, University College of Swansea, Swansea, UK.
4.
César de Sá
,
J. M. A.
,
1986
, “
Numerical Modelling of Glass Forming Processes
,”
Eng. Comput.
,
3
(4), pp.
266
275
.10.1108/eb023666
5.
Cormeau
,
A.
,
Cormeau
,
I.
, and
Roose
,
J.
,
1984
, “
Numerical Simulation of Glass-Blowing
,”
Numerical Analysis of Forming Processes
,
J. F. T.
Pittman
,
O. C.
Zienkiewicz
,
R. D.
Wood
, and
J. M.
Alexander
, eds.
Wiley
,
New York
, pp.
219
237
.
6.
Williams
,
J. H.
,
Owen
,
D. R. J.
, and
César de Sá
,
J. M. A.
,
1986
, “
The Numerical Modelling of Glass Forming Processes
,”
Collected Papers of the XIV International Congress on Glass
,
H. C.
Bharwaj
, ed.,
Indian Ceramic Society
,
New Delhi, India
, pp.
138
145
.
7.
DeLorenzi
,
H. G.
, and
Nied
,
H. F.
,
1987
, “
Blow Molding and Thermoforming of Plastics: Finite Element Modelling
,”
Comput. Struct.
,
26
(1–2), pp.
197
206
.10.1016/0045-7949(87)90250-1
8.
Warby
,
M. K.
, and
Whiteman
,
J. R.
,
1988
, “
Finite Element Model of Viscoelastic Membrane Deformation
,”
Comput. Methods Appl. Mech. Eng.
,
68
(1), pp.
33
54
.10.1016/0045-7825(88)90105-3
9.
Chung
,
K.
,
1989
, “
Finite Element Simulation of PET Stretch/Blow-Molding Process
,”
J. Mater. Shaping Tech.
,
7
(4), pp.
229
239
.10.1007/BF02834774
10.
César de Sá
,
J.
,
Natal
,
R.
,
Silva
,
C.
, and
Cardoso
,
R. P.
,
1999
, “
A Computational Model for Glass Container Forming Processes
,”
Europe Conference on Computational Mechanics Solids, Structures and Coupled Problems in Engineering
,
Munich, Germany
, August 31–September 3.
11.
Hyre
,
M.
,
2002
, “
Numerical Simulation of Glass Forming And Conditioning
,”
J. Am. Ceram. Soc.
,
85
(
5
), pp.
1047
1056
.10.1111/j.1151-2916.2002.tb00221.x
12.
Diraddo
,
R. W.
, and
Garcia-Rejon
,
A.
,
1993
, “
Profile Optimization for the Prediction of Initial Parison Dimensions From Final Blow Moulded Part Specifications
,”
Comput. Chem. Eng.
,
17
(
8
), pp.
751
764
.10.1016/0098-1354(93)80061-Q
13.
Diraddo
,
R. W.
, and
Garcia-Rejon
,
A.
,
1993
, “
On-Line Prediction of Final Part Dimensions in Blow Molding: A Neural Network Computing Approach
,”
Polym. Eng. Sci.
,
33
(
11
), pp.
653
664
.10.1002/pen.760331102
14.
Lee
,
D. K.
, and
Soh
,
S. K.
,
1996
, “
Prediction of Optimal Preform Thickness Distribution in Blow Molding
,”
Polym. Eng. Sci.
,
36
(
11
), pp.
1513
1520
.10.1002/pen.10546
15.
Thibault
,
F.
,
Malo
,
A.
,
Lanctot
,
B.
, and
Diraddo
,
R.
,
2007
, “
Preform Shape and Operating Condition Optimization for the Stretch Blow Molding Process
,”
Polym. Eng. Sci.
,
47
(
3
), pp.
289
301
.10.1002/pen.20707
16.
Gauvin
,
C.
,
Thibault
,
F.
, and
Laroche
,
D.
,
2003
, “
Optimization of Blow Molded Part Performance Through Process Simulation
,”
Polym. Eng. Sci.
,
43
(
7
), pp.
1407
1414
.10.1002/pen.10119
17.
Hsu
,
Y. L.
,
Liu
,
T. C.
,
Thibault
,
F.
, and
Lanctot
,
B.
,
2004
, “
Design Optimization of the Blow Moulding Process Using Fuzzy Optimization Algorithm
,”
Proc. Inst. Mech. Eng., Part B
,
218
(2), pp.
197
212
.10.1243/095440504322886523
18.
Yu
,
J.-C.
,
Chen
,
X.-X.
,
Hung
,
T.-R.
, and
Thibault
,
F.
,
2004
, “
Optimization of Extrusion Blow Molding Processes Using Soft Computing and Taguchi's Method
,”
J. Intell. Manuf.
,
15
(5), pp.
625
634
.10.1023/B:JIMS.0000037712.33636.41
19.
Lochegnies
,
D.
,
Moreau
,
P.
, and
Guilbaut
,
R.
,
2005
, “
A Reverse Engineering Approach to the Design of the Blank Mould for the Glass Blow and Blow Process
,”
Glass Technol.
,
46
(
2
), pp.
116
120
. Available at: http://www.ingentaconnect.com/content/sgt/gt/2005/00000046/00000002/art00017
20.
Moreau
,
P.
,
Maréchal
,
C.
, and
Lochegnies
,
D.
,
2001
, “
Optimum Parison Shape for Glass Blowing
,”
XIXth International Congress on Glass, Society of Glass Technology
,
Edinburgh, UK
, July 1–6, pp.
548
549
.
21.
Choi
,
J.
,
Ha
,
D.
,
Kim
,
J.
, and
Grandhi
,
R. V.
,
2004
, “
Inverse Design of Glass Forming Process Simulation Using an Optimization Technique and Distributed Computing
,”
J. Mater. Process. Technol.
,
148
(3), pp.
342
352
.10.1016/j.jmatprotec.2004.02.053
22.
Moreau
,
P.
,
Lochegnies
,
D.
, and
Oudin
,
J.
,
1998
, “
An Inverse Method for Prediction of the Prescribed Temperature Distribution in the Creep Forming Process
,”
Proc. Inst. Mech. Eng., Part C
,
212
(1), pp.
7
11
.10.1243/0954408981529259
23.
Groot
,
J. A. W. M.
,
Giannopapa
,
C. G.
, and
Mattheij
,
R. M. M.
,
2009
, “
Numerical Optimisation of Blowing Glass Parison Shapes
,”
ASME
Paper No. PVP2009-77946. 10.1115/PVP2009-77946
24.
Groot
,
J. A. W. M.
,
Giannopapa
,
C. G.
, and
Mattheij
,
R. M. M.
,
2011
, “
Development of a Numerical Optimisation Method for Blowing Glass Parison Shapes
,”
ASME J. Manuf. Sci. Eng.
,
133
(
1
), p.
011010
.10.1115/1.4003331
25.
Giannopapa
,
C. G.
, and
Groot
,
J. A. W. M.
,
2007
, “
A Computer Simulation Model for the Blow–Blow Forming Process of Glass Containers
,”
ASME
Paper No. PVP2007-26408.10.1115/PVP2007-26408
26.
Sethian
,
J. A.
,
1999
,
Level Set Methods and Fast Marching Methods
,
Cambridge University
,
New York
.
27.
Sussman
,
M.
,
Smereka
,
P.
, and
Osher
,
S.
,
1994
, “
A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow
,”
J. Comp. Phys
,
114
(1), pp.
146
159
.10.1006/jcph.1994.1155
28.
Adalsteinsson
,
D.
, and
Sethian
,
J. A.
,
1995
, “
A Fast Level Set Method for Propagating Interfaces
,”
J. Comp. Phys
,
118
(2), pp.
269
277
.10.1006/jcph.1995.1098
29.
Chang
,
Y. C.
,
Hou
,
T. Y.
,
Merriman
,
B.
, and
Osher
,
S.
,
1996
, “
A Level Set Formulation of Eulerian Interface Capturing Methods for Incompressible Fluid Flows
,”
J. Comp. Phys.
,
124
(2), pp.
449
464
.10.1006/jcph.1996.0072
30.
Groot
,
J. A. W. M.
,
Mattheij
,
R. M. M.
, and
Laevsky
,
K.
,
2011
, “
Mathematical Modelling of Glass Forming Processes
,”
Mathematical Models in the Manufacturing of Glass
(Lecture Notes in Mathematics),
A.
Fasano
, ed., Vol.
2010
,
Springer
,
Berlin
, pp.
1
56
.
31.
Bathe
,
K.
,
1996
,
Finite Element Procedures
,
Prentice Hall
,
Englewood Cliffs, NJ
.
32.
Hindmarsh
,
A. C.
,
Brown
,
P. N.
,
Grant
,
K. E.
,
Lee
,
S. L.
,
Serban
,
R.
,
Shumaker
,
D. E.
, and
Woodward
,
C. S.
,
2005
, “
SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers
,”
ACM Trans. Math. Software
,
31
(3), pp.
363
396
.10.1145/1089014.1089020
33.
van der Vorst
,
H. A.
,
1992
, “
Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems
,”
SIAM J. Sci. Stat. Comput.
,
13
(
2
), pp.
631
644
.10.1137/0913035
34.
Kimmel
,
R.
, and
Sethian
,
J. A.
,
1998
, “
Computing Geodesic Paths on Manifolds
,”
Proc. Natl. Acad. Sci. USA
,
95
(15), pp.
8431
8435
.10.1073/pnas.95.15.8431
35.
Haagh
,
G. A. A. V.
,
1998
, “
Simulation of Gas-Assisted Injection Moulding
,” PhD thesis, Eindhoven University of Technology, Eindhoven, Netherlands.
36.
Carroll
,
C. W.
,
1961
, “
The Created Response Surface Technique for Optimizing Nonlinear Restrained Systems
,”
Oper. Res.
,
9
(2), pp.
169
184
.10.1287/opre.9.2.169
37.
Schnur
,
D. S.
, and
Zabaras
,
N.
,
1992
, “
An Inverse Method for Determining Elastic Material Properties and a Material Interface
,”
Int. J. Numer. Methods Eng.
,
33
(10), pp.
2039
2057
.10.1002/nme.1620331004
38.
Gelin
,
J. C.
, and
Ghouati
,
O.
,
1994
, “
An Inverse Method for Determining Viscoplastic Properties of Aluminium Alloys
,”
J. Mater. Process. Technol.
,
45
(1–4), pp.
435
440
.10.1016/0924-0136(94)90378-6
39.
Broyden
,
C. G.
,
1965
, “
A Class of Methods for Solving Nonlinear Simultaneous Equations
,”
Math. Comput.
,
19
(
92
), pp.
577
593
.10.1090/S0025-5718-1965-0198670-6
40.
Moré
,
J. J.
, and
Trangenstein
,
J. A.
,
1976
, “
On the Global Convergence of Broyden's Method
,”
Math. Comput.
,
30
(
135
), pp.
523
540
.10.1090/S0025-5718-1976-0418451-2
41.
Dennis
,
J. E.
, and
Schnabel
,
R. B.
,
1996
,
Numerical Methods for Unconstrained Optimization and Nonlinear Equations
,
SIAM
,
Philadelphia, PA
.
42.
Nocedal
,
J.
, and
Wright
,
S. J.
,
1999
,
Numerical Optimization
,
Springer
,
New York
.
You do not currently have access to this content.