The effects of severe thermal and pressure transients on coated substrates with indentation-induced, blister defects were analyzed by experimental and finite element methods. Cohesive zone properties evaluated in a previous study were first used in an implicit indentation simulation. Indentation simulation results then served as the initial conditions for explicit modeling of interfacial flaw evolution due to the already determined thermal and pressure transients that included interstitial pressure in the defect. The thermal structural model was used to assess the transient thermal- and stress-states and the propensity for fracture related damage and evolution while undergoing severe convective heating and pressure loading analogous to gun tube conditions. Results illustrated the overall benefits of the in-phase applied pressure in terms of suppressing crack growth except when delayed interstitial loading was considered. Thermal capacitance was also studied and it was found that crack growth decreased significantly with higher specific heat and demonstrates the potential importance of coating thermophysical properties.

References

References
1.
Underwood
,
J. H.
,
Vigilante
,
G. N.
, and
Toriano
,
E.
,
2002
, “
Failure Beneath Cannon Thermal Barrier Coatings by Hydrogen Cracking; Mechanisms and Modeling
,”
Fatigue Fract. Mech.
,
33
, pp.
101
115
.
2.
Segall
,
A. E.
, and
Sipics
,
M. J.
,
2004
, “
The Influence of Interpolation Errors on Finite-Element Calculations Involving Stress-Curvature Proportionalities
,”
Finite Elem. Anal. Design
,
40
(
13–14
), pp.
1873
1884
.10.1016/j.finel.2003.11.006
3.
Underwood
,
J. H.
,
Parker
,
A. P.
,
Vigilante
,
G. N.
, and
Cote
,
P. J.
,
1995
, “
Fatigue Life Analyses and Tests for Thick-Wall Cylinders Including Effects of Overstrain and Axial Grooves
,”
ASME J. Pressure Vessel Technol.
,
117
(3), pp.
222
226
.10.1115/1.2842115
4.
Underwood
,
J. H.
,
Witherell
,
M. D.
,
Sopok
,
S.
,
McNeil
,
J. C.
,
Mulligan
,
C. P.
, and
Vigilante
,
G. N.
,
2003
, “
Thermomechanical Modeling of Transient Thermal Damage in Cannon Bore Materials
,”
Wear
,
257
, pp.
992
998
.10.1016/j.wear.2004.07.008
5.
Underwood
,
J. H.
,
Parker
,
A. P.
,
Vigilante
,
G. N.
, and
Cote
,
P. J.
,
2003
, “
Thermal Damage, Cracking and Rapid Erosion of Cannon Bore Coatings
,”
ASME J. Pressure Vessel Technol.
,
125
, pp.
299
304
.10.1115/1.1593077
6.
Underwood
,
J. H.
, and
Toriano
,
E.
,
2003
, “
Critical Fracture Processes in Army Cannons: A Review
,”
ASME J. Pressure Vessel Technol.
,
125
, pp.
287
292
.10.1115/1.1593075
7.
Underwood
,
J. H.
,
Todaro
,
M. E.
, and
Vigilante
,
G. N.
,
2004
, “
Modeling of Transient Thermal Damage in Ceramics for Cannon Bore Applications
,”
Ceram. Eng. Sci. Proc.
,
25
(
3
), pp.
189
194
.10.1002/SERIES2122
8.
Underwood
,
J. H.
,
Vigilante
,
G. N.
,
Mulligan
,
C. P.
, and
Todaro
,
M. E.
,
2005
, “
Thermo-Mechanically Controlled Erosion in Army Cannons: A Review
,”
Gun Tubes Conference
, pp.
1
6
.
9.
Underwood
,
J. H.
,
Vigilante
,
G. N.
, and
Mulligan
,
C. P.
,
2007
, “
Review of Thermo-Mechanical Cracking and Wear Mechanisms in Large Caliber Guns
,”
Wear
,
263
, pp.
1616
1621
.10.1016/j.wear.2006.12.005
10.
Petipas
,
E.
, and
Campion
,
B.
,
2003
, “
Crack Propagation in a Gun Barrel Due to the Firing Thermo-Mechanical Stresses
,”
ASME J. Pressure Vessel Technol.
,
125
, pp.
293
298
.10.1115/1.1592813
11.
Newaz
,
G. M.
,
Nusier
,
S. Q.
, and
Chaudhury
,
Z. A.
,
1998
, “
Damage Accumulation Mechanisms in Thermal Barrier Coatings
,”
ASME J. Eng. Mater. Technol.
,
120
, pp.
149
153
.10.1115/1.2807004
12.
Bao
,
G.
, and
Cai
,
H.
,
1997
, “
Delamination Cracking in Functionally Graded Coating/Metal Substrate Systems
,”
Acta Metall.
,
45
(
3
), pp.
1055
1066
.
13.
El-Borgi
,
S.
,
Aloulou
,
W.
, and
Zghal
,
A.
,
2006
, “
Buckling of a Functionally Graded Coating With an Embedded Crack Bonded to a Homogeneous Substrate
,”
Int. J. Fract.
,
142
, pp.
137
150
.10.1007/s10704-006-9031-8
14.
Zhu
,
D.
,
Miller
,
R. A.
,
Nagaraj
,
B. A.
, and
Bruce
,
R. W.
,
2001
, “
Thermal Conductivity of EB-PVD Thermal Barrier Coatings Evaluated by a Steady-State Laser Heat Flux Technique
,”
Surf. Coat. Technol.
,
138
, pp.
1
8
.10.1016/S0257-8972(00)01145-2
15.
Hutchinson
,
J. W.
, and
Evans
,
A. G.
,
2002
, “
On the Delamination of Thermal Barrier Coatings in a Thermal Gradient
,”
Surf. Coat. Technol.
,
149
, pp.
179
184
.10.1016/S0257-8972(01)01451-7
16.
Harris
,
J.
,
Segall
,
A. E.
,
Robinson
,
D.
, and
Carter
,
R.
, “
Cohesive Zone Property Measurement by a Hybrid Experimental and Numerical Method Using Ball Indentations
,”
J. Test. Eval.
(in press).
17.
ANSYS
,
2009
, “Finite Element Software,” ANSYS, Cannonsburg, PA.
18.
ABAQUS
,
2009
, “SIMULIA,” Providence, RI.
19.
Gueubelle
,
P. H.
, and
Baylor
,
J. S.
,
1998
, “
Impact-Induced Delamination of Compostes: A 2D Simulation
,”
Composites, Part B
,
29B
, pp.
589
602
.10.1016/S1359-8368(98)00013-4
20.
Yovanovich
,
M.
,
1981
, “
New Contact and Gap Correlations for Conforming Rough Surfaces
,”
AIAA 16th Thermophysics Conference
,
Palo Alto, CA
.
21.
Nied
,
H. F.
,
1984
, “
Thermal Shock in a Circumferentially Cracked Hollow Cylinder With Cladding
,”
Eng. Fract. Mech.
,
20
(
1
), pp.
113
137
.10.1016/0013-7944(84)90120-6
22.
Warrender
,
J. M.
,
Mulligan
,
C. P.
, and
Underwood
,
J. H.
,
2007
, “
Analysis of Thermo-Mechanical Cracking in Refractory Coatings Using Variable Pulse-Duration Laser Pulse Heating
,”
Wear
,
263
, pp.
1540
1544
.10.1016/j.wear.2007.02.017
You do not currently have access to this content.