Experimental results of uniaxial ratcheting tests for stainless steel 304 (SS304) under stress-controlled condition at room temperature showed that the elastic domain defined in this paper expands with accumulation of plastic strain. Both ratcheting strain and viscoplastic strain rates reduce with the increase of elastic domain, and the total strain will be saturated finally. If the saturated strain and corresponded peak stress of different experimental results under the stress ratio R ≥ 0 are plotted, a curve demonstrating the material shakedown states of SS304 can be constituted. Using this curve, the accumulated strain in a pressure vessel subjected to cyclic internal pressure can be determined by only an elastic-plastic analysis, and without the cycle-by-cycle analysis. Meanwhile, a physical experiment of a thin-walled pressure vessel subjected to cyclic internal pressure has been carried out to verify the feasibility and effectiveness of this noncyclic method. By comparison, the accumulated strains evaluated by the noncyclic method agreed well with those obtained from the experiments. The noncyclic method is simpler and more practical than the cycle-by-cycle method for engineering design.

References

References
1.
ASME
,
2007
,
Boiler and Pressure Vessel Code
,
The American Society of Mechanical Engineers
,
New York
.
2.
Melan
,
E.
,
1938
, “
Zur plastizität des räumlichen kontinuums
,”
Ing.-Arch.
,
9
, pp.
116
126
.10.1007/BF02084409
3.
Koiter
,
W. T.
,
1960
, “
General Theorems for Elastic-Plastic Bodies
,”
Progress in Solid Mechanics
,
I. N.
Sneddon
and
R.
Hill
, eds.,
North-Holland
,
Amsterdam
, Vol.
1
, pp.
165
221
.
4.
Armstrong
,
P. J.
, and
Frederick
,
C. O.
,
1966
, “
A Mathematical Representation of the Multiaxial Bauschinger Effect
,” CEGB Report No. RD/B/N 731.
5.
Chaboche
,
J. L.
,
1986
, “
Time-Independent Constitutive Theories for Cyclic Plasticity
,”
Int. J. Plast.
,
2
, pp.
149
188
.10.1016/0749-6419(86)90010-0
6.
Chaboche
,
J. L.
,
1991
, “
On Some Modifications of Kinematic Hardening to Improve the Description of Ratcheting Effects
,”
Int. J. Plast.
,
7
, pp.
661
678
.10.1016/0749-6419(91)90050-9
7.
Chaboche
,
J. L.
,
2008
, “
A Review of Some Plasticity and Viscoplasticity Constitutive Theories
,”
Int. J. Plast.
,
24
, pp.
1642
1693
.10.1016/j.ijplas.2008.03.009
8.
Ohno
,
N.
, and
Wang
,
J. D.
,
1993
, “
Kinematic Hardening Rules With Critical State of Dynamic Recovery, Part I: Formulation and Basic Features for Ratcheting Behavior
,”
Int. J. Plast.
,
9
, pp.
375
390
.10.1016/0749-6419(93)90042-O
9.
Ohno
,
N.
, and
Wang
,
J. D.
,
1993
, “
Kinematic Hardening Rules With Critical State of Dynamic Recovery, Part II: Application to Experiments of Ratcheting Behavior
,”
Int. J. Plast.
,
9
, pp.
391
403
.10.1016/0749-6419(93)90043-P
10.
Ohno
,
N.
,
1997
, “
Recent Progress in Constitutive Modeling for Ratcheting
,”
Mater. Sci. Res. Int.
,
3
, pp.
1
9
.10.2472/jsms.46.3Appendix_1
11.
Abdel-Karim
,
M.
, and
Ohno
,
N.
,
2000
, “
Kinematic Hardening Model Suitable for Ratcheting With Steady-State
,”
Int. J. Plast.
,
16
, pp.
225
240
.10.1016/S0749-6419(99)00052-2
12.
Abdel-Karim
,
M.
,
2009
, “
Modified Kinematic Hardening Rules for Simulations of Ratcheting
,”
Int. J. Plast.
,
25
, pp.
1560
1587
.10.1016/j.ijplas.2008.10.004
13.
Abdel-Karim
,
M.
,
2010
, “
An Evaluation for Several Kinematic Hardening Rules on Prediction of Multiaxial Stress-Controlled Ratcheting
,”
Int. J. Plast.
,
26
, pp.
711
730
.10.1016/j.ijplas.2009.10.002
14.
Abdel-Karim
,
M.
,
2010
, “
An Extension for the Ohno-Wang Kinematic Hardening Rules to Incorporate Isotropic Hardening
,”
Int. J. Pressure Vessels Piping
,
87
, pp.
170
176
.10.1016/j.ijpvp.2010.02.003
15.
Hassan
,
T.
, and
Kyriakides
,
S.
,
1992
, “
Ratcheting in Cyclic Plasticity, Part I: Uniaxial Behavior
,”
Int. J. Plast.
,
8
, pp.
91
116
.10.1016/0749-6419(92)90040-J
16.
Hassan
,
T.
,
Corona
,
E.
, and
Kyriakides
,
S.
,
1992
, “
Ratcheting in Cyclic Plasticity, Part II: Multiaxial Behavior
,”
Int. J. Plast.
,
8
, pp.
117
146
.10.1016/0749-6419(92)90010-A
17.
Hassan
,
T.
, and
Kyriakides
,
S.
,
1994
, “
Ratcheting of Cyclically Hardening and Softening Materials: I. Uniaxial Behavior
,”
Int. J. Plast.
,
10
, pp.
149
184
.10.1016/0749-6419(94)90033-7
18.
Hassan
,
T.
, and
Kyriakides
,
S.
,
1994
, “
Ratcheting of Cyclically Hardening and Softening Materials: II. Multiaxial Behavior
,”
Int. J. Plast.
,
10
, pp.
185
212
.10.1016/0749-6419(94)90034-5
19.
Hassan
,
T.
,
Taleb
,
L.
, and
Kyriakides
,
S.
,
2008
, “
Influence of Non-Proportional Loading on Ratcheting Responses and Simulations by Two Recent Cyclic Plasticity Models
,”
Int. J. Plast.
,
24
, pp.
1863
1889
.10.1016/j.ijplas.2008.04.008
20.
Bari
,
S.
, and
Hassan
,
T.
,
2002
, “
An Advancement in Cyclic Plasticity Modeling for Multiaxial Ratcheting Simulation
,”
Int. J. Plast.
,
18
, pp.
873
894
.10.1016/S0749-6419(01)00012-2
21.
McDowell
,
D. L.
,
1995
, “
Stress State Dependence of Cyclic Ratcheting Behavior of Two Rail Steels
,”
Int. J. Plast.
,
11
, pp.
397
421
.10.1016/S0749-6419(95)00005-4
22.
McDowell
,
D. L.
,
2000
, “
Modeling and Experiments in Plasticity
,”
J. Solids Struct.
,
37
, pp.
293
309
.10.1016/S0020-7683(99)00094-3
23.
Mahbadi
,
H.
,
Eslami
,
M.
R.
, 2002, “Cyclic Loading of Beams Based on the Prager and Frederick–Armstrong Kinematic Hardening Models,”
International Journal of Mechanical Sciences
,
44
, pp. 859–879.10.1016/S0020-7403(02)00033-4
24.
Mahbadi
,
H.
,
Eslami
,
M.
R.
, 2002, “Cyclic Loading of Thick Vessels Based on the Prager and Armstrong–Frederick Kinematic Hardening Models,”
International Journal of Pressure Vessels and Piping
,
83
, pp. 409–419.10.1016/j.ijpvp.2006.02.031
25.
Jiang
,
Y.
, and
Sehitoglu
,
H.
,
1994
, “
Cyclic Ratcheting of 1070 Steel Under Multiaxial Stress State
,”
Int. J. Plast.
,
10
, pp.
579
608
.10.1016/0749-6419(94)90015-9
26.
Jiang
,
Y.
, and
Sehitoglu
,
H.
,
1994
, “
Mutiaxial Cyclic Ratcheting Under Multiple Step Liading
,”
Int. J. Plast.
,
10
, pp.
849
870
.10.1016/0749-6419(94)90017-5
27.
Jiang
,
Y.
, and
Sehitoglu
,
H.
,
1996
, “
Modeling of Cyclic Ratcheting Plasticity, Part I: Development of Constitutive Relations
,”
J. Appl. Mech.
,
63
, pp.
720
725
.10.1115/1.2823355
28.
Jiang
,
Y.
, and
Sehitoglu
,
H.
,
1996
, “
Modeling of Cyclic Ratcheting Plasticity, part II: Comparison of Model Simulations With Experiments
,”
J. Appl. Mech.
,
63
, pp.
726
733
.10.1115/1.2823356
29.
Kang
,
G.
, and
Liu
,
Y.
,
2008
, “
Uniaxial Ratcheting and Low-Cycle Fatigue Failure of the Steel With Cyclic Stabilizing or Softening Feature
,”
Mater. Sci. Eng. A
,
472
, pp.
258
268
.10.1016/j.msea.2007.03.029
30.
Taleb
,
L.
,
Cailletaud
,
G.
, and
Blaj
,
L.
,
2006
, “
Numerical Simulation of Complex Ratcheting Tests With a Multi-Mechanism Model Type
,”
Int. J. Plast.
,
22
, pp.
724
753
.10.1016/j.ijplas.2005.05.003
31.
Taleb
,
L.
, and
Cailletaud
,
G.
,
2010
, “
An Updated Version of the Multimechanism Model for Cyclic Plasticity
,”
Int. J. Plast.
,
27
, pp.
250
281
.10.1016/j.ijplas.2009.11.002
32.
Taleb
,
L.
, and
Cailletaud
,
G.
,
2011
, “
Cyclic Accumulation of the Inelastic Strain in the 304L SS Under Stress Control at Room Temperature: Ratcheting or Creep
,”
Int. J. Plast.
,
27
, pp.
1936
1958
.
33.
Taleb
,
L.
, and
Hauet
,
A.
,
2009
, “
Multiscale Experimental Investigations About the Cyclic Behavior of the 304L SS
,”
Int. J. Plast.
,
25
, pp.
1359
1385
.10.1016/j.ijplas.2008.09.004
34.
Delobelle
,
P.
,
Robinet
,
P.
, and
Bocher
,
L.
,
1995
, “
Experimental Study and Phenomenological Modelization of Ratchet Under Uniaxial and Biaxial Loading on an Austenitic Stainless Steel
,”
Int. J. Plast.
,
11
, pp.
295
330
.10.1016/S0749-6419(95)00001-1
35.
Bari
S.
,
2001
, “
Constitutive Modeling for Cyclic Plasticity and Ratcheting
,” A thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy, Under the Guidance of Dr. Tasnim Hassan.
36.
Kang
,
G.
,
Gao
,
Q.
, and
Yang
,
X.
,
2002
, “
A Visco-Plastic Constitutive Model Incorporated With Cyclic Hardening for Uniaxial/Multiaxial Ratcheting of SS304 Stainless Steel at Room Temperature
,”
Mech. Mater.
,
34
, pp.
521
531
.10.1016/S0167-6636(02)00153-9
37.
Chen
,
G.
,
Chen
,
X.
,
Kim
,
K. S.
,
Abdel-Karim
,
M.
, and
Sakane
,
M.
,
2007
, “
Strain Rate Dependent Constitutive Model of Multiaxial Ratchetting of 63Sn-37Pb Solder
,”
ASME J. Electron. Packag.
,
129
(3), pp.
278
286
.10.1115/1.2753917
38.
Abdalla
,
H. F.
,
Megahed
,
M. M.
, and
Younan
,
M. Y.
,
2007
, “
A Simplified Technique for Shakedown Limit Load Determination
,”
Nucl. Eng. Des.
,
237
, pp.
1231
1240
.10.1016/j.nucengdes.2006.09.033
39.
Abdalla
,
H. F.
, and
Megahed
,
M. M.
,
2006
, “
Determination of Shakedown Limit Load for a 90-Degree Pipe Bend Using a Simplified Technique
,”
ASME J. Pressure Vessel Technol.
,
128
(4), pp.
618
624
.10.1115/1.2349575
40.
Abdalla
,
H. F.
,
Megahed
,
M. M.
, and
Younan
,
M. Y.
,
2011
, “
A Simplified Technique for Shakedown Limit Load Determination of a Large Square Plate With a Small Central Hole Under Cyclic Biaxial Loading
,”
Nucl. Eng. Des.
,
241
, pp.
657
665
.10.1016/j.nucengdes.2010.11.019
41.
Adibi-Asl
,
R.
, and
Reinhardt
,
W.
,
2011
, “
Non-Cyclic Shakedown/Ratcheting Boundary Determination—Part 1: Analytical Approach
,”
Int. J. Pressure Vessels Piping
,
88
, pp.
311
320
.10.1016/j.ijpvp.2011.06.006
42.
Adibi-Asl
,
R.
, and
Reinhardt
,
W.
,
2011
, “
Non-Cyclic Shakedown/Ratcheting Boundary Determination—Part 2: Numerical Implementation
,”
Int. J. Pressure Vessels Piping
,
88
, pp.
321
329
.10.1016/j.ijpvp.2011.06.007
43.
Perzyna
,
P.
,
1968
, “
Fundamental Problem in Viscoplasticity
,”
Advances in Applied Mechanics
, Vol.
9
, pp. 313–377, Academic Press, New York.
44.
Pierce
,
D.
,
Shih
,
C. F.
, and
Needleman
,
A.
,
1984
, “
A Tangent Modulus Method for Rate Dependent Solids
,”
Comput. Struct.
,
33
, pp.
875
887
.10.1016/0045-7949(84)90033-6
You do not currently have access to this content.