In the current research, the elastic shakedown limit loads for a cylindrical vessel–nozzle intersection is determined via a direct noncyclic simplified technique. The cylindrical vessel–nozzle intersection is subjected to a spectrum of steady internal pressure magnitudes and cyclic in-plane bending moments on the nozzle end. The determined elastic shakedown limit loads are utilized to generate the elastic shakedown boundary (Bree diagram) of the cylindrical vessel–nozzle structure. Additionally, the maximum moment carrying capacity (limit moments) and the elastic limit loads are determined and imposed on the Bree diagram of the structure. The simplified technique outcomes showed excellent correlation with the results of full cyclic loading elastic–plastic finite element simulations.

References

1.
Abdalla
,
H. F.
,
Megahed
,
M. M.
, and
Younan
,
M. Y. A.
,
2006
, “
Determination of Shakedown Limit Load for a 90 Degree Pipe Bend Using a Simplified Technique
,”
ASME J. Pressure Vessel Technol.
,
128
(4), pp.
618
624
.10.1115/1.2349575
2.
Abdalla
,
H. F.
,
Megahed
,
M. M.
, and
Younan
,
M. Y. A.
,
2007
, “
A Simplified Technique for Shakedown Limit Load Determination
,”
Nucl. Eng. Des.
,
237
, pp.
1231
1240
.10.1016/j.nucengdes.2006.09.033
3.
Abdalla
,
H. F.
,
Megahed
,
M. M.
, and
Younan
,
M. Y. A.
,
2011
, “
A Simplified Technique for Shakedown Limit Load Determination of a Large Square Plate With a Small Central Hole Under Cyclic Biaxial Loading
,”
Nucl. Eng. Des.
,
241
, pp.
657
665
.10.1016/j.nucengdes.2010.11.019
4.
Abdalla
,
H. F.
,
Megahed
,
M. M.
, and
Younan
,
M. Y. A.
,
2009
, “
Comparison of Pipe Bend Ratchetting/Shakedown Test Results with the Shakedown Boundary Determined via a Simplified Technique
,”
ASME transactions, PVP division conference
, Prague, Czech Republic.
5.
Leckie
,
F. A.
, and
Penny
,
R. K.
,
1967
, “
Shakedown Pressure for Radial Nozzles in Spherical Pressure Vessels
,”
Int. J. Solids Struct.
,
3
, pp.
743
755
.10.1016/0020-7683(67)90050-9
6.
Mohamed
,
A. I.
,
Megahed
,
M. M.
,
Bayoumi
,
L. S.
, and
Younan
,
M. Y. A.
,
1999
, “
Applications of Iterative Elastic Techniques for Elastic-Plastic Analysis of Pressure Vessels
,”
J. Pressure Vessel Technol.
,
121
, pp.
1
6
.10.1115/1.2883663
7.
Muscat
,
M.
, and
Mackenzie
,
D.
,
2003
, “
Elastic-Shakedown Analysis of Axisymmetric Nozzles
,”
ASME J. Pressure Vessel Technol.
,
125
(4), pp.
365
370
.10.1115/1.1613301
8.
Wu
,
B. H.
,
Sang
,
Z. F.
, and
Widera
,
G. E. O.
,
2010
, “
Plastic Analysis of Cylindrical Vessels under In Plane Moment on the Nozzle
,”
ASME J. Pressure Vessel Technol.
,
132
(6), p.
061203
.10.1115/1.4001741
9.
Melan
,
E.
,
1936
, “
Theorie Statisch Unbestimmter Systeme Aus Ideal Plastischean Baustoff
,”
Sitzber. Akad. Wiss. Wien II a
,
145
, pp.
195
218
.
10.
ASME
,
2003
, “
ASME Boiler and Pressure Vessel Code
,” NH-3000, Article NH-3213.24.
11.
Melan
,
E.
,
1938
, “
Der Spannungszustand eines Mises-Henckyschen Kontinuums bei veraenderlicher Belastung
,”
Sitzber. Akad. Wiss.
,
147
, pp.
73
78
.
12.
Melan
,
E.
,
1938
, “
Zur Plastizitaet des reumlichen Kontinuums
,”
Ing. Arch.
,
8
, pp.
116
126
.10.1007/BF02084409
13.
Bree
,
J.
,
1967
, “
Elastic-Plastic Behaviour of Thin Tubes Subjected to Internal Pressure and Intermittent High Heat Fluxes With Application to Fast Nuclear Reactor Fuel Elements
,”
J. Strain Anal.
,
2
, pp.
226
238
.10.1243/03093247V023226
14.
Parkes
,
E. W.
,
1964
, “
Structural Effects of Repeated Thermal Loading
,”
Thermal Stress
,
Benham
et al., ed.,
Pitman
,
London
.
15.
Mackenzie
,
D.
, and
Boyle
,
J. T.
,
1993
, “
A Simple Method for Estimating Shakedown Load for Complex Structures
,”
J. Pressure Vessel Technol.
,
265
, pp.
89
94
.
16.
Marriott
,
D. L.
,
1988
, “
Evaluation of Deformation or Load Control of Stress under Inelastic Conditions Using Finite Elements Stress Analysis
,”
ASME Trans., PVP division conference
, Vol.
136
, pp.
3
9
.
17.
Dhalla
,
A. K.
,
1987
, “
A Simplified Procedure to Classify Stresses for Elevated Temperature Service
,”
ASME transactions, PVP division conference
,
120
, pp.
177
188
.
18.
Seshadri
,
R.
,
1991
, “
The Generalized Local Stress Strain (GLOSS) Analysis-Theory and Applications
,”
ASME J. Pressure Vessel Technol.
,
113
(2), pp.
219
227
.10.1115/1.2928749
19.
Ponter
,
A.
, and
Boulbibane
,
M.
,
2002
, “
Minimum Theorems and the Linear Matching Method for Bodies in a Cyclic State of Creep
,”
Eur. J. Mech. A/Solids
,
21
, pp.
915
925
.10.1016/S0997-7538(02)01245-7
20.
Nadarajah
,
C.
,
Mackenzie
,
D.
, and
Boyle
,
J. T.
,
1996
, “
Limit and Shakedown Analysis of Nozzle/Cylinder Intersections Under Internal Pressure and In-Plane Moment Loading
,”
Int. J. Pressure Vessels Piping
,
86
, pp.
261
272
.10.1016/0308-0161(95)00064-X
21.
Robinson
,
M.
,
1978
, “
Lower Bound Limit Pressure for the Cylinder-Cylinder Intersection—A parametric Survey
,”
ASME J. Pressure Vessel Technol.
,
100
(1), pp.
65
73
.10.1115/1.3454436
22.
Macfarlane
,
W. A.
, and
Findlay
,
G. E.
,
1978
, “
A Simple Technique for Calculating Shakedown Loads in Pressure Vessels
,”
Proc. IMechE
,
186
, pp.
4
72
.
23.
Hamilton
,
R.
,
Boyle
,
J. T.
,
Shi
,
J.
, and
Mackenzie
,
D.
,
1996
, “
Shakedown Load Bounds by Elastic Finite Element Analysis
,”
ASME Trans., PVP division conference
, Vol.
343
, pp.
421
434
.
24.
Yang
,
P.
,
Liu
,
Y.
,
Ohtake
,
Y.
,
Yuan
,
H.
, and
Cen
,
Z.
,
2005
, “
Limit Analysis Based on a Modified Elastic Compensation Method for Nozzle to Cylinder Junctions
,”
Pressure Vessels Piping
,
82
, pp.
770
776
.10.1016/j.ijpvp.2005.06.005
25.
ASME
Boiler and Pressure Vessel Code, 2004 edition, Section VIII Division 2, American Society of Mechanical Engineers
, New York.
26.
Polizzotto
,
C.
,
1993
, “
On the Conditions to Prevent Plastic Shakedown of Structures: Part I—Theory
,”
ASME J. Appl. Mech.
,
60
, pp.
15
19
.10.1115/1.2900739
27.
Muscat
,
M.
, and
Hamilton
,
R.
,
2002
, “
Elastic Shakedown in Pressure Vessel Components Under Non Proportional Loading
PVP
,
447
, pp.
95
102
.
28.
Preiss
,
R.
,
1999
, “
On the Shakedown Analysis of Nozzles Using Elasto-Plastic FEA
,”
Int. J. Pressure Vessels Piping
,
76
, pp.
421
434
.10.1016/S0308-0161(99)00019-8
29.
Hamilton
,
R. H.
,
Mackenzie
,
D.
,
Shi
,
J.
, and
Boyle
,
J. T.
,
1996
, “
Simplified Lower Bound Limit Analysis of Pressurized Cylinder/Cylinder Intersections Using Generalized Yield Criteria
,”
Int. J. Pressure Vessels Piping
,
67
, pp.
219
226
.10.1016/0308-0161(95)00063-1
30.
Megahed
,
M. M.
,
1981
, “
Influence of Hardening Rule on the Elasto-Plastic Behaviour of a Simple Structure Under Cyclic Loading
,”
Int. J. Mech. Sci.
,
23
, pp.
169
182
.10.1016/0020-7403(81)90028-X
31.
Abdalla
,
H. F.
,
Megahed
,
M. M.
, and
Younan
,
M. Y.
,
2007
, “
Shakedown Limits of a 90-Degree Pipe Bend Using Small and Large Displacement Formulations
,”
ASME J. Pressure Vessel Technol.
,
129
(2), pp.
287
295
.10.1115/1.2716433
32.
Abdalla
,
H. F.
,
Megahed
,
M. M.
, and
Younan
,
M. Y.
,
2011
, “
Shakedown Limit Loads for 90-Degree Scheduled Pipe Bends Subjected to Steady Internal Pressure and Cyclic Bending Moments
,”
ASME J. Pressure Vessel Technol.
,
133
(3), p.
031207
.10.1115/1.4002055
33.
Abdalla
,
H. F.
,
Megahed
,
M. M.
, and
Younan
,
M. Y.
,
2011
, “
Shakedown Limit Load Determination for a Kinematically Hardening 90–Degree Pipe Bend Subjected to Steady Internal Pressure and Cyclic Bending Moments
,”
ASME J. Pressure Vessel Technol.
,
133
(5), p.
051212
.10.1115/1.4003474
34.
Vlaicu
,
D.
,
2009
, “
Shakedown Analysis of Axisymmetric Nozzles Under Primary and Secondary Cyclic Loads
,”
ASME transactions, PVP division conference
, Prague.
35.
SIMULIA—Dassault Systèmes
,
2011
,
ABAQUS/Standard, Version 6.11-1
, “User Documentation Manuals”.
You do not currently have access to this content.