Corrugated pipes combine small-scale rigidity and large-scale flexibility, which make them very useful in industrial applications. The flow through such a pipe can induce strong undesirable tonal noise (whistling) and even drive integrity threatening structural vibrations. Placing a corrugated segment along a smooth pipe reduces the whistling, while this composite pipe still retains some global flexibility. The whistling is reduced by thermoviscous damping in the smooth pipe segment. For a given corrugated segment and flow velocity, one would like to predict the smooth pipe length just sufficient to avoid tonal noise: the onset of whistling. A linear model based on empirical data is proposed that predicts the conditions at the onset of whistling for a composite pipe at moderately high Reynolds numbers, Re: 3000<Re<100,000. Experimental results for corrugated pipes of eight different corrugation geometries are presented revealing fair agreement with the theory. Based on these results, a universal qualitative prediction tool is obtained valid for corrugated pipe segments long compared to the acoustic wave-length.

References

References
1.
Nakiboğlu
,
G.
,
Rudenko
,
O.
, and
Hirschberg
,
A.
,
2012
, “
Aeroacoustics of the Swinging Corrugated Tube: Voice of the Dragon
,”
J. Acoust. Soc. Am.
,
131
, pp.
749
765
.10.1121/1.3651245
2.
Rajavel
,
B.
, and
Prasad
,
M. G.
,
2013
, “
Acoustics of Corrugated Pipes: A Review
,”
Appl. Mech. Rev.
,
65
, p.
050000
.10.1115/1.4025302
3.
Fletcher
,
N.
, and
Rossing
,
T.
,
1998
,
The Physics of Musical Instruments
,
Springer–Verlag
, NY.
4.
Rudenko
,
O.
,
Nakiboğlu
,
G.
,
Holten
,
A.
, and
Hirschberg
,
A.
,
2013
, “
On Whistling of Pipes With a Corrugated Pipe Segment: Experiment and Theory
,”
J. Sound Vib.
,
332
, pp.
7226
7242
.10.1016/j.jsv.2013.08.034
5.
Rudenko
,
O.
,
Nakiboğlu
,
G.
,
Holten
,
A.
, and
Hirschberg
,
A.
,
2013
, “
Corrugated Pipe Segment With Anechoic Termination: Critical Mach Number for Whistling
,”
19th AIAA/CEAS Aeroacoustics Conference
, pp.
2013
2026
.
6.
Rudenko
,
O.
,
Meertens
,
D.
,
Nakiboğlu
,
G.
,
Hirschberg
,
A.
, and
Belfroid
,
S.
,
2013
, “
A Linear Model for the Onset of Whistling in Corrugated Pipe Segments: Influence of Geometry
,”
Proceedings of the ASME 2013 Pressure Vessels and Piping Division Conference
, pp.
2013
97273
.
7.
Howe
,
M.
,
2002
,
Theory of Vortex Sound
,
Cambridge University Press
,
Cambridge, UK
.
8.
Nakiboğlu
,
G.
,
Belfroid
,
S. P. C.
,
Golliard
,
J.
, and
Hirschberg
,
A.
,
2011
, “
On the Whistling of Corrugated Pipes: Effect of Pipe Length and Flow Profile
,”
J. Fluid Mech.
,
672
, pp.
78
108
.10.1017/S0022112010005884
9.
Nakiboğlu
,
G.
,
Rudenko
,
O.
, and
Hirschberg
,
A.
,
2013
, “
Hydrodynamic Interference in Corrugated Pipe Whistling
,”
20th International Congress on Sound and Vibration (ICSV20)
.
10.
Mohamed
,
S.
,
Graf
,
H.
, and
Ziada
,
S.
,
2011
, “
Aeroacoustic Source of a Shallow Cavity in a Pipeline
,” Proceedings of the ASME 2011 Pressure Vessels and Piping Division Conference,
ASME
Paper No. PVP2011-57437, Baltimore, MD, July 17–21, 2011, pp.
2011
57437
.10.1115/PVP2011-57437
11.
Nakiboğlu
,
G.
, and
Hirschberg
,
A.
,
2012
, “
Aeroacoustic Power Generated by Multiple Compact Axisymmetric Cavities: Effect of Hydrodynamic Interference
,”
Phys. Fluids
,
24
, p.
067101
.10.1063/1.4718726
12.
Pierce
,
A.
,
1989
,
Acoustics: An Introduction to Its Physical Principles and Applications, Acoustical Society of America
, NY.
13.
Nakiboğlu
,
G.
,
Belfroid
,
S.
,
Willems
,
J.
, and
Hirschberg
,
A.
,
2010
, “
Whistling Behavior of Periodic Systems: Corrugated Pipes and Multiple Side Branch System
,”
Int. J. Mech. Sci.
,
52
, pp.
1458
1470
.10.1016/j.ijmecsci.2010.03.018
14.
Brillouin
,
L.
,
1946
,
Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices
,
McGraw-Hill
,
NY
.
15.
Kop'ev
,
V.
,
Mironov
,
M.
, and
Solntseva
,
V.
,
2008
, “
Aeroacoustic Interaction in a Corrugated Duct
,”
Acoust. Phys.
,
54
, pp.
197
203
.10.1134/S1063771008020061
16.
Tonon
,
D.
,
Landry
,
B.
,
Belfroid
,
S.
,
Willems
,
J.
,
Hofmans
,
G.
, and
Hirschberg
,
A.
,
2010
, “
Whistling of a Pipe System With Multiple Side Branches: Comparison With Corrugated Pipes
,”
J. Sound Vib.
,
329
(
8
), pp.
1007
1024
.10.1016/j.jsv.2009.10.020
17.
Goyder
,
H.
,
2012
, “
Key Parameters for Noise Generation Within Corrugated Pipes
,”
In Flow-Induced Vibration
,
C.
Meskell
and
G.
Bennet
, eds., p.
585
, Proceedings of 10th International Conference on Flow-Induced Vibration (& Flow-Induced Noise),
Dublin, Ireland
.
18.
Goyder
,
H.
,
2013
, “
Noise Generation and Propagation Within Corrugated Pipes
,”
ASME J. Pressure Vessel Technol.
,
135
(
3
), p.
030901
.10.1115/1.4024024
19.
Lighthill
,
M.
,
1978
,
Waves in Fluids
,
Cambridge University Press
,
Cambridge
.
20.
Ronneberger
,
D.
, and
Ahrens
,
C.
,
1977
, “
Wall Shear Stress Caused by Small Amplitude Perturbations of Turbulent Boundary-Layer Flow: An Experimental Investigation
,”
J. Fluid Mech.
,
83
, pp.
433
464
.10.1017/S0022112077001281
21.
Peters
,
M.
,
Hirschberg
,
A.
,
Reijnen
,
A.
, and
Wijnands
,
A.
,
1993
, “
Damping and Reflection Coefficient Measurements for an Open Pipe at Low Mach and Low Helmholtz Numbers
,”
J. Fluid Mech.
,
256
, p.
499
.10.1017/S0022112093002861
22.
Allam
,
S.
, and
Åbom
,
M.
,
2006
, “
Investigation of Damping and Radiation Using Full Plane Wave Decomposition in Ducts
,”
J. Sound Vib.
,
292
(
35
), pp.
519
534
.10.1016/j.jsv.2005.08.016
23.
Weng
,
C.
,
Boij
,
S.
, and
Hanifi
,
A.
,
2013
, “
The Attenuation of Sound by Turbulence in Internal Flows
,”
J. Acoust. Soc. Am.
,
133
, pp.
3764
3776
.10.1121/1.4802894
24.
Motheau
,
E.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2012
, “
Using Boundary Conditions to Account for Mean Flow Effects in a Zero Mach Number Acoustic Solver
,”
ASME J. Eng. Gas Turbines Power
,
134
(
11
), p.
111502
.10.1115/1.4007198
25.
Bruggeman
,
J.
,
Hirschberg
,
A.
,
Van Dongen
,
M.
,
Wijnands
,
A.
, and
Gorter
,
J.
,
1991
, “
Self-Sustained Aero-Acoustic Pulsations in Gas Transport Systems: Experimental Study of the Influence of Closed Side Branches
,”
J. Sound Vib.
,
150
, pp.
371
393
.10.1016/0022-460X(91)90893-O
26.
Graf
,
H. R.
, and
Ziada
,
S.
,
1992
, “
Flow Induced Acoustic Resonance in Closed Side Branches: An Experimental Determination of the Excitation Source
,”
1992 International Symposium on Flow-Induced Vibration and Noise
, Vol.
7
of Winter Annual Meeting of the American Society of Mechanical Engineers, Anaheim, CA, pp.
63
80
.
27.
Nakiboğlu
,
G.
,
Rudenko
,
O.
,
Holten
,
A.
,
Hirschberg
,
A.
,
Golliard
,
J.
, and
Díez
,
N. G.
,
2013
, “
On the Higher Hydrodynamic Modes and the Onset of Whistling in Self-Sustained Cavity Oscillations
,”
AIAA/CEAS Aeroacoustics Conference
, pp.
2013
2155
.
28.
Michalke
,
A.
,
1965
, “
On Spatially Growing Disturbances in an Inviscid Shear Layer
,”
J. Fluid Mech.
,
23
, pp.
521
544
.10.1017/S0022112065001520
29.
Schlichting
,
H.
, and
Gersten
,
K.
,
2000
,
Boundary-Layer Theory
.
Springer
,
New York
.
30.
Nakiboğlu
,
G.
,
Manders
,
H. B. M.
, and
Hirschberg
,
A.
,
2012
, “
Aeroacoustic Power Generated by a Compact Axisymmetric Cavity: Prediction of Self-Sustained Oscillation and Influence of the Depth
,”
J. Fluid Mech.
,
703
, pp.
163
191
.10.1017/jfm.2012.203
31.
Golliard
,
J.
,
Belfroid
,
S.
,
Gonzalez-Diez
,
N.
,
Bendiksen
,
E.
, and
Frimodt
,
C.
,
2013
, “
On the Whistling of Corrugated Pipes With Narrow Cavities
,” Proceedings of the ASME 2013 Pressure Vessels and Piping Division Conference,
ASME
Paper No. PVP2013-97340, pp.
V004T04A035
.10.1115/PVP2013-97340
You do not currently have access to this content.