The feasibility and accuracy of large eddy simulation is investigated for the case of three-dimensional unsteady flows past an elastically mounted cylinder at moderate Reynolds number. Although these flow problems are unconfined, complex wake flow patterns may be observed depending on the elastic properties of the structure. An iterative procedure is used to solve the structural dynamic equation to be coupled with the Navier–Stokes system formulated in a pseudo-Eulerian way. A moving mesh method is involved to deform the computational domain according to the motion of the fluid structure interface. Numerical simulations of vortex-induced vibrations are performed for a freely vibrating cylinder at Reynolds number 3900 in the subcritical regime under two low mass-damping conditions. A detailed physical analysis is provided for a wide range of reduced velocities, and the typical three-branch response of the amplitude behavior usually reported in the experiments is exhibited and reproduced by numerical simulation.

References

References
1.
Khalak
,
A.
, and
Williamson
,
C. H. K.
,
1999
, “
Motions, Forces and Mode Transitions in Vortex-Induced Vibrations at Low Mass Damping
,”
J. Fluids Struct.
,
13
, pp.
813
851
.10.1006/jfls.1999.0236
2.
Govardhan
,
R.
, and
Williamson
,
C. H. K.
,
2000
, “
Modes of Vortex Formation and Frequency Response of a Freely Vibrating Cylinder
,”
J. Fluid Mech.
,
420
, pp.
85
130
.10.1017/S0022112000001233
3.
Williamson
,
C. H. K.
, and
Govardhan
,
R.
,
2004
, “
Vortex-Induced Vibrations
,”
Annu. Rev. Fluid Mech.
,
36
, pp.
413
455
.10.1146/annurev.fluid.36.050802.122128
4.
Yamamoto
,
C. T.
,
Meneghini
,
J. R.
,
Saltara
,
F.
,
Fregonesi
,
R. A.
, and
Ferrari
,
J. A.
,
2004
, “
Numerical Simulation of Vortex-Induced Vibration on Flexible Cylinders
,”
J. Fluids Struct.
,
19
, pp.
467
489
.10.1016/j.jfluidstructs.2004.01.004
5.
Singh
,
S. P.
, and
Mittal
,
S.
,
2005
, “
Vortex-Induced Vibration at Low Reynolds Numbers: Hysteresis and Vortex-Shedding Modes
,”
J. Fluids Struct.
,
20
, pp.
1085
1104
.10.1016/j.jfluidstructs.2005.05.011
6.
Placzek
,
A.
,
Sigrist
,
J. F.
, and
Hamdouni
,
A.
,
2007
, “
Numerical Simulation of Vortex Shedding Past a Circular Cylinder at Low Reynolds Number With Finite Volume Technique Part II: Flow Induced Vibrations
,”
ASME
Pressure Vessel and Piping Conference, San Antonio, Jul. 22–26, pp. 21–30.10.1115/PVP2007-26021
7.
Al-Jamal
,
H.
, and
Dalton
,
C.
,
2004
, “
Vortex-Induced Vibrations Using Large Eddy Simulation at a Moderate Reynolds Number
,”
J. Fluids Struct.
,
19
, pp.
73
92
.10.1016/j.jfluidstructs.2003.10.005
8.
Guilmineau
,
E.
, and
Queutey
,
P.
,
2004
, “
Numerical Simulation of Vortex-Induced Vibration of a Circular Cylinder with Low Mass-Damping in a Turbulent Flow
,”
J. Fluids Struct.
,
19
, pp.
449
466
.10.1016/j.jfluidstructs.2004.02.004
9.
Pan
,
Z. Y.
,
Cui
,
W. C.
, and
Miao
,
Q. M.
,
2007
, “
Numerical Simulation of Vortex-Induced Vibration of a Circular Cylinder at Low Mass-Damping Using RANS Code
,”
J. Fluids Struct.
,
23
, pp.
23
37
.10.1016/j.jfluidstructs.2006.07.007
10.
Lucor
,
D.
,
Foo
,
J.
, and
Karniadakis
,
G. E.
,
2005
, “
Vortex Mode Selection of a Rigid Cylinder Subject to VIV at Low Mass Damping
,”
J. Fluids Struct.
,
20
, pp.
483
503
.10.1016/j.jfluidstructs.2005.02.002
11.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids
,
3
(
7
), pp.
1760
1765
.10.1063/1.857955
12.
Lilly
,
D.
,
1992
, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids
,
4
, pp.
633
635
.10.1063/1.858280
13.
Archambeau
,
F.
,
Méchitoua
,
N.
, and
Sakiz
,
M.
,
2004
, “
A Finite Volume Code for the Computation of Turbulent Incompressible Flows—Industrial Applications
,”
Int. J. Finite Vol.
,
1
, pp. 1–62.
14.
Lesoinne
,
M.
, and
Farhat
,
C.
,
1996
, “
A Geometric Conservation for Flow Problems With Moving Boundaries and Deformable Meshes, and Their Impact on Aeroelastic Computations
,”
Comput. Methods Appl. Mech. Eng.
,
134
, pp.
71
90
.10.1016/0045-7825(96)01028-6
15.
Huvelin
,
F.
,
2008
, “
Couplage de Codes en Interaction Fluide-Structure et Applications aux Instabilités Fluide-Élastiques
,” Ph.D. thesis, Lille, France.
16.
Moureau
,
V.
,
Vasilyev
,
O. V.
,
Angelberger
,
C.
, and
Poinsot
,
T. J.
,
2004
, “
Commutation Errors in LES on Moving Grids: Application to Piston Engine Flows Center for Turbulence Research Stanfort
,” Proceedings of the Summer Program.
17.
Longatte
,
E.
,
Verreman
,
V.
, and
Souli
,
M.
,
2009
, “
Time Marching for Simulation of Fluid Structure Interaction Problems
,”
J. Fluids Struct.
,
25
, pp.
95
111
.10.1016/j.jfluidstructs.2008.03.009
18.
Piperno
,
S.
,
1997
, “
Explicit/Implicit Fluid/Structure Staggered Procedure With a Structural Predictor and Fluid Subcycling for 2D Inviscid Aeroelastic Simulations
,”
Int. J. Numer. Methods Fluids
,
25
, pp.
1207
1226
.10.1002/(SICI)1097-0363(19971130)25:10<1207::AID-FLD616>3.0.CO;2-R
19.
Piperno
,
S.
, and
Farhat
,
C.
,
2001
, “
Partitionned Procedures for the Transient Solution of Coupled Aeroelastic Problems
,”
Comput. Methods Appl. Mech. Eng.
,
190
, pp.
3147
3170
.10.1016/S0045-7825(00)00386-8
20.
Schaefer
,
M.
,
Heck
,
M.
, and
Yigit
,
S.
,
2007
, “
An Implicit Partitioned Method for the Numerical Method of Fluid-Structure Interaction
,” Fluid-Structure Interaction (LNCSE), Vol.
53
,
H.-J.
Bungartz
and
M.
Schäfer
, ed.,
Springer
, pp.
171
194
.10.1007/3-540-34596-5_8
21.
Causin
,
P.
,
Gerbeau
,
J. F.
, and
Nobile
,
F.
,
2005
, “
Added-Mass Effect in the Design of Partioned Algorithms for Fluid Structure Problems
,”
Comput. Methods Appl. Mech. Eng.
,
194
, pp.
4506
4527
.10.1016/j.cma.2004.12.005
22.
Maman
,
N.
, and
Farhat
,
C.
,
1995
, “
Matching Fluid and Structure Meshes for Aero-Elastic Computations: A Parallel Approach
,”
Comput. Struct.
,
54
(
4
), pp.
779
785
.10.1016/0045-7949(94)00359-B
23.
Hover
,
F. S.
,
Techet
,
A. H.
, and
Triantafyllou
,
M. S.
,
1998
, “
Forces on Oscillating Uniform and Tapered Cylinders in Crossflow
,”
J. Fluid Mech.
,
363
, pp.
97
114
.10.1017/S0022112098001074
24.
Vikestad
,
K.
,
Vandiver
,
J. K.
, and
Larsen
,
C. M.
,
2000
, “
Added Mass and Oscillation Frequency for a Circular Cylinder Subjected to Vortex-Induced Vibrations and External Disturbance
,”
J. Fluids Struct.
,
14
, pp.
1071
1088
.10.1006/jfls.2000.0308
25.
Sarpkaya
,
A.
,
2004
, “
A Critical Review of the Intrinsic Nature of Vortex-Induced Vibrations
,”
J. Fluids Struct.
,
19
, pp.
389
447
.10.1016/j.jfluidstructs.2004.02.005
26.
Gopalkrishnan
,
R.
,
1993
, “
Vortex-Induced Forces on Oscillating Bluff Cylinders
,” Ph.D. thesis, Departement of Ocean Engineering, MIT, Cambridge, MA.
You do not currently have access to this content.