The quality of Natural Gas Piping Systems (NGPS), must be ensured against manufacturing defects. The main purpose of the present paper is to investigate the effect of loading mode and load angle (30 deg, 45 deg, and 60 deg) on the limit load of miter pipe bends (MPB), under different crack depths a/W = 0–0.4 at a crosshead speed 500 mm/min. The geometry of cracked and uncracked multi-miter pipe bends are pipe bend angle, α = 90 deg, pipe bend factor, h = 0.844, standard dimension ratio, SDR = 11, and three junctions, m = 3. The material of the investigated pipe is a high-density polyethylene (HDPE), which is commonly used in NGPS. The welds at the miter pipe junction are produced by butt-fusion welding. For all loading modes the limit load is obtained by the tangent intersection (TI) method from the load–deflection curves produced by the specially designed and constructed testing machine at the laboratory5. Tensile tests are conducted on specimens longitudinally extruded from the pipe with thickness, T = 10, 30 mm, at different crosshead speeds (5–500 mm/min), and different gauge lengths (G = 20, 25, and 50 mm) to determine the mechanical properties of welded and unwelded specimens. The fracture toughness is determined on the basis of elastic plastic fracture mechanics (EPFM). Curved three-point bend specimens (CTPB), are used. All specimens are provided with artificial precrack at the crack tip, a/W = 0.5. The effect of specimen thickness variation (B = 10, 15, 22.5, 30, 37.5, and 45 mm) for welded and unwelded specimens is studied at room temperature (Ta = 23 °C) and at different crosshead speeds, VC.H, ranging from 5 to 500 mm/min. The study reveals that increasing the crack depth leads to a decrease in the stiffness and limit load of MPB for both in-plane, and out-of-plane bending moment. In case of combined load (out-of-plane and in-plane opening; mode), higher load angles lead to an increase in the limit load. The highest limit load value occurs at a loading angle, ϕ = 60 deg. In case of combined load (out-of-plane and in-plane closing; mode), the limit load decreases with increasing load angles. At a load angle ϕ = 30 deg, the higher limit load value occurred in both cases. For combined load opening case, higher values of limit load are obtained. The crosshead speed has a significant effect on the mechanical behavior of both welded and unwelded specimens. The fracture toughness, JIC, is greater for unwelded than welded specimen.

References

References
1.
Ragab
,
A. R.
, and
El-Zoghby
,
A.
,
1985
, “
Evaluation of the Mechanical Behavior of Plain and Spirally Stiffened Polyvinyl Chloride Pipes
,”
J. Test. Eval.
,
13
(
2
), pp.
137
142
.10.1520/JTE10772J
2.
Mandell
,
J. F.
,
Roberts
,
D. R.
, and
McGarry
,
F. J.
,
1983
, “
Plane Strain Fracture Toughness of Polyethylene Pipe Materials
,”
Polym. Eng. Sci.
,
23
(
7
), pp.
402
409
.10.1002/pen.760230707
3.
Yayla
,
P.
, and
Bilgin
,
Y.
,
2007
, “
Squeeze–off of Polyethylene Pressure Pipes: Experimental Analysis
,”
Polym. Test.
,
26
, pp.
132
141
.10.1016/j.polymertesting.2006.09.006
4.
Fujikake
,
M.
,
Fukumura
,
M.
, and
Kitao
,
K.
,
1997
, “
Analysis of the Electrofusion Joining Process in Polyethylene Gas Piping Systems
,”
Comput. Struct.
,
64
(
5/6
), pp.
939
948
.10.1016/S0045-7949(97)00008-4
5.
ASTM D2122-98
,
2010
, “
Standard Test Method for Determining Dimensions of Thermoplastic Pipe and Fittings
,”
Annual Book of ASTM Standards, Part 8.04, Plastic Pipe and Building Products
.
6.
British Standard
,
1998
, “
Methods of Testing Plastics
,” BS2782.
7.
ASTM Standard D638M-10
, “
Standard Test Method for Tensile Properties of Plastics (Metric)
,”
Annual Book of ASTM Standards, Part 08.01, Plastics-General Test Method
.
8.
DIN 53455–1981
, “
Testing of Plastics—Tensile Test
,” pp.
1
7
.
9.
Dusunceli
,
N.
, and
Colak
,
O. U.
,
2008
, “
The Effects of Manufacturing Techniques on Viscoelastic and Viscoplastic Behavior of High Density Polyethylene (HDPE)
,”
Mater. Des.
,
29
, pp.
1117
1124
.10.1016/j.matdes.2007.06.003
10.
Decourcy
,
D. R.
, and
Atkinson
,
J. R.
,
1977
, “
The Use of Tensile Tests to Determine the Optimum Conditions for Butt Welding Polyethylene Pipes of Different Melt Flow Index
,”
J. Mater. Sci.
,
12
, pp.
1535
1551
.10.1007/BF00542804
11.
Chen
,
H.
,
Scavuzzo
,
R. J.
, and
Srivatsan
,
T. S.
,
1997
, “
Influence of Joining on the Tensile Behavior of High Density Polyethylene Pipe
,”
J. Mater. Sci.
,
16
, pp.
897
898
.
12.
Chen
,
H.
,
Scavuzzo
,
R. J.
, and
Srivatsan
,
T. S.
,
1997
, “
Influence of Joining on the Fatigue and Fracture Behavior of High Density Polyethylene Pipe
,”
J. Mater. Sci. Perform.
,
6
(
4
), pp.
473
480
.10.1007/s11665-997-0119-8
13.
Leskovics
,
K.
,
Kollar
,
M.
, and
Barczy
,
P.
,
2006
, “
A Study of Structure and Mechanical Properties of Welded Joints in Polyethylene Pipes
,”
Mater. Sci. Eng. A
,
419
, pp.
138
143
.10.1016/j.msea.2005.12.019
14.
Niglia
,
J.
,
Cisilino
,
A.
,
Seltzer
,
R.
, and
Frontini
,
P.
,
2002
,
Determination of Impact Fracture Toughness of Polyethylene Using Arc–Shaped Specimens
,”
Eng. Fract. Mech.
,
69
, pp.
1391
1399
.10.1016/S0013-7944(02)00008-5
15.
Han
,
L.
,
Deng
,
Y.
, and
Liu
,
C.
,
1999
, “
The Determination of JIC for Polyethylene Pipe Using Non-Standard Arc-Shaped Specimen
,”
Int. J. Pressure Vessels Piping
,
76
, pp.
647
651
.10.1016/S0308-0161(99)00032-0
16.
DIN 16963 Part 1
,
1980
, “
Pipe Joints and Elements for High Density Polyethylene (HDPE) Pressure Pipelines
,” Types 1 and 2 Pipe Bends of segments for Butt-Welding Dimensions.
17.
ASME Boiler and Pressure Vessel Code
,
1998
, Section III, Division I, Appendix II, Experimental Stress Analysis, II-1430.
18.
EN 13445-3
,
2002
, “
European Standard for Unfired Pressure Vessels- Part 3: Design
,” European Committee for Standardization (CEN).
19.
Robertson
,
A.
,
Li
,
H.
, and
Mackenzie
,
D.
,
2005
, “
Plastic Collapse of Pipe Bends Under Combined Internal Pressure and In-Plane Bending
,”
Int. J. Pressure Vessels Piping
,
82
, pp.
407
416
.10.1016/j.ijpvp.2004.09.005
20.
Shalaby
,
M. A.
, and
Younan
,
M. Y. A.
,
1998
, “
Limit Loads for Pipe Elbows With Internal Pressure Under In-Plane Closing Bending Moments
,”
ASME J. Pressure Vessel Technol.
,
120
(
1
), pp.
35
42
.10.1115/1.2841882
21.
Shalaby
,
M. A.
, and
Younan
,
M. Y. A.
,
1999
, “
Limit Loads for Pipe Elbows Subjected to In-Plane Opening Moments and Internal Pressure
,”
ASME J. Pressure Vessel Technol.
,
121
(
1
), pp.
17
23
.10.1115/1.2883661
22.
Chattopadhyay
,
J.
,
Tomar
,
A. K. S.
,
Dutta
,
B. K.
, and
Kushwaha
,
H. S.
,
2004
, “
Closed-Form TES Plastic Moment Equations of Through Wall Circumferentially Cracked Elbows Subject to In-Plane Bending Moment
,”
ASME J. Pressure Vessel Technol.
,
126
(
3
), pp.
307
317
.10.1115/1.1767177
23.
Moffat
,
D. G.
,
Hsieh
,
M. F.
, and
Lynch
,
M.
,
2001
, “
An Assessment of ASME III and CEN TC54 Methods of Determining Plastic and Limit Loads for Pressure System Components
,”
J. Strain Anal. Eng. Des.
,
36
(
3
), pp.
301
312
.10.1243/0309324011514485
24.
EL-Bagory
,
T. M.
,
Younan
,
M. A.
,
Sallam
,
H. E. M.
, and
Abdel-Latif
,
L. A.
,
2013
, “
Plastic Load of Precracked Polyethylene Miter Pipe Bends Subjected to In-Plane Bending Moment
,”
ASME Jnl Pressure Vessel Technology
,
135
(
6
), p.
061203
.10.1115/1.4024658
25.
Ashby
,
M. F.
, and
Jones
,
D. R.
,
1998
,
Engineering Materials 2: An Introduction to Microstructures, Processing and Design
,
2nd ed.
,
Butterworth–Heinemann, Ltd.
,
Oxford
, p.
249
.
26.
Zhao
,
J. Q.
,
Daigle
,
L.
, and
Beaulieu
,
D.
,
2002
, “
Effect of Joint Contamination on the Quality of Butt–Fused High–Density Polyethylene (HDPE) Pipe Joints
,”
Can. J. Civil Eng.
,
29
, pp.
787
798
.10.1139/l02-078
27.
Che
,
M.
,
Grellmann
,
W.
, and
Seidler
,
S.
,
1997
, “
Crack Resistance Behavior of Polyvinyl Chloride
,”
J. Appl. Polym. Sci.
,
64
(
6
), pp.
1079
1090
.10.1002/(SICI)1097-4628(19970509)64:6<1079::AID-APP7>3.0.CO;2-I
28.
Bastida
,
S.
,
Eguiaza'bal
,
J. I.
,
Gaztelumendi
,
M.
, and
Nazábal
,
J.
,
1998
, “
On the Thickness Dependence of the Modulus of Elasticity of Polymers
,”
Polym. Test.
,
17
, pp.
139
145
.10.1016/S0142-9418(97)00042-1
29.
ASTM Standard D6068–10
, “
Standard Test Methods for Determining J–R Curves of Plastic Materials
,”
Annual Book of ASTM Standards, Part 8.03, Plastics-General Test Method
.
30.
Chan
,
M. K. V.
, and
Williams
,
J. G.
,
1983
, “
J–Integral Studies of Crack Initiation of a Tough High Density Polyethylene
,”
Int. J. Fract.
,
23
, pp.
145
159
.
You do not currently have access to this content.