Pressure vessels comprise critical plant equipment within industrial operations. The fact that the vessel operates under pressure, and may carry toxic, dangerous or hazardous contents, necessitates that care is taken to ensure safety of humans operating it and the environment within which it operates. Residual stress developed during welding of pressure vessel structures adversely affects fatigue life of such structure by reducing fracture toughness. Formation of residual stresses during welding occurs when nonuniform heating of the metallic surfaces produces substantial temperature gradients, which in turn cause plastic straining of the different portions of the weld-piece material, thereby subjecting it to postcooling internal stresses that are likely to weaken it. A number of studies have been performed on welding parametric analysis with the help of design of experiments (DoE), mathematical programming, evolutionary algorithms and finite element methods, with the intention to quantify effects of welding factors on resultant residual stress. The objective of this review is to organize such literature according to the specific areas of analysis in order to enhance access thereto and elucidate relevance thereof for purposes of reference work and further studies. The paper specifies three categories of influential factors as prewelding conditions, in-process parameters, and postwelding conditions. It is shown that prewelding conditions, such as the choice of welding process, must be chosen in line with the nature of materials to be welded, operational application of the structure, and trade-offs between service life and production costs. Heat input (which is the function of arc voltage, welding current, and travel speed) is the most influential machine-related in-process parameter in the residual stress generation during welding. It is also observed that when applying mitigating factors, care should be taken not to exacerbate the residual stress situation through suboptimal parametric set-up.

References

References
1.
Sterjovski
,
Z.
,
2003
, “
Investigation of Post Weld Heat Treatment of Quenched and Tempered Pressure Vessel Steel
,” Ph.D. thesis, University of Wollongong, Australia.
2.
Karlsson
,
L.
,
2005
, “
Residual Stresses Due to Welding of a Nozzle to a Pressure Vessel
,” Master's dissertation, Division of Solid Mechanics, Lund University, Sweden.
3.
Siddique
,
M.
,
2005
, “
Experimental and Finite Element Investigation of Residual Stresses and Distortions in Welded Pipe-flange Joints
,” Ph.D. thesis, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Pakistan.
4.
Anca
,
A.
,
Cardona
,
A.
,
Risso
,
J.
, and
Fachinotti
,
V. D.
,
2010
, “
Finite Elements Modelling of Welding Process
,”
Applied Math Modeling
,
35
(2011), pp. 688–707.
5.
Panontin
,
T. L.
, and
Hill
,
M. R.
,
1996
, “
The Effect of Residual Stresses on Brittle and Ductile Fracture Initiation Predicted by Micromechanical Models
,”
Int. J. Fract.
,
82
, pp.
317
333
.10.1007/BF00013236
6.
Leggatt
,
R. H.
,
2008
, “
Residual Stress in Welded Structures
,”
Int. J. Pressure Vessels Piping
,
85
, pp.
144
151
.10.1016/j.ijpvp.2007.10.004
7.
Jones
,
B. K.
,
Emery
,
A. F.
, and
Marburger
,
S. J.
,
1993
, “
An Analytical and Experimental Study of the Effects of Welding Parameters on Fusion Welds
,”
Weld. Res. Suppl.
, pp.
51s
59s
.
8.
Teng
,
T.
, and
Chang
,
P.
,
1998
, “
Three-Dimensional Thermo-Mechanical Analysis of Circumferentially Welded Thin-Walled Pipes
,”
Int. J. Pressure Vessel Piping
,
75
, pp.
237
247
.10.1016/S0308-0161(98)00031-3
9.
Teng
,
T.-L.
,
Chang
,
P.-H.
, and
Tseng
,
W.-C.
,
2003
, “
Effect of Welding Sequence on Residual Stresses
,”
Comput. Struct.
,
81
, pp.
273
286
.10.1016/S0045-7949(02)00447-9
10.
Michaleris
,
P.
, (1999),
Residual Stress Distributions for Multi-Pass Welds in Pressure Vessel and Piping Components
,
Edison Welding Institute
,
Columbus
.
11.
Moraitis
,
G. A.
, and
Labeas
,
G. N.
,
2009
, “
Prediction of Residual Stresses and Distortions Due to Laser Beam Welding of Butt Joints in Pressure Vessels
,”
Int. J. Pressure Vessel Piping
,
86
, pp.
133
142
.10.1016/j.ijpvp.2008.11.004
12.
Balasubramanian
,
V.
, and
Guha
,
B.
,
2004
, “
Effect of Welding Processes on Toe-cracking Behaviour of Pressure Vessel Grade Steel
,”
Eng. Failure Anal.
11
, pp.
575
587
.10.1016/j.engfailanal.2003.09.005
13.
Colegrove
,
P.
,
Ikeagu
,
C.
,
Thistletwaite
,
A.
,
Williams
,
S.
,
Nagy
,
T.
,
Suder
,
W.
,
Steuwer
,
A.
, and
Pirling
,
T.
,
2009
, “
The Welding Process Impact on Residual Stress and Distortion
,”
Sci. Technol. Weld. Joining
,
14
(
8
), pp.
717
725
.10.1179/136217109X406938
14.
Teng
,
T.-L.
, and
Lin
,
C.-C.
,
1998
, “
Effect of Welding Conditions on Residual Stresses Due to Butt Welds
,”
Int. J. Pressure Vessel Piping
,
75
, pp.
857
864
.10.1016/S0308-0161(98)00084-2
15.
Miller
,
D. K.
,
2010
, “
Welding Heavy Structural Steel—Successfully
.” Available at http://www.modernsteel.com/uploads/FullFiles/Miller_2010.pdf, last accessed 25 Sept. 2013.
16.
Warren
,
C. D.
,
Feng
,
Z.
,
Qiao
,
D.
,
Zhang
,
W.
,
Yu
,
X.
,
Yan
,
B.
, and
Hou
,
W.
,
2011
, “
Improving Fatigue Performance of AHSS Welds
,” Project LM062 of Oak Ridge National Laboratory.
17.
Lee
,
C.-H.
, and
Chang
,
K.-H.
,
2008
, “
Three Dimensional Finite Element Simulation of Residual Stresses in Circumferential Welds of Steel Pipe Including Pipe Diameter Effects
,”
Mater. Sci. Eng., A
,
487
, pp.
210
218
.10.1016/j.msea.2007.10.011
18.
Dong
,
P.
,
2003
, “
The Mechanics of Residual Stress Distribution in Girth Welds
,”
Proceedings of the Second International Conference on Integrity of High Temperature Welds, IOM Communications
,
London
, pp.
185
196
.
19.
Teng
,
T.-L.
,
Chang
,
P.-H.
, and
Ko
,
H.-C.
,
2000
, “
Finite Element Analysis of Circular Patch Welds
,”
Int. J. Pressure Vessels Piping
,
77
, pp.
643
650
.10.1016/S0308-0161(00)00041-7
20.
Qureshi
,
M. E.
,
2004
, “
Analysis of Residual Stresses and Distortions in Circumferentially Welded Thin-Walled Cylinders
,” Ph.D. thesis, National University of Science and Technology, Pakistan.
21.
Keehan
,
E.
,
2004
, “
Effect of Microstructure on Mechanical Properties of High Strength Steel Weld Metals
,” Ph.D. thesis, Department of Experimental Physics, Chalmers University of Technology and Goteborg University, Sweden.
22.
Yang
,
Y.
,
2008
, “
The Effect of Submerged Arc Welding Parameters on the Properties of Pressure Vessel and Wind Turbine Steels
,” Masters thesis, Department of Mechanical Engineering, University of Saskatchewan, Canada.
23.
Smith
,
C.
,
Pistorius
,
P. G. H.
, and
Wannenburg
,
J.
,
1997
, “
The Effect of a Long Post Weld Heat Treatment on the Integrity of a Welded Joint in Pressure Vessel Steel
,”
Int. J. Pressure Vessels Piping
,
70
, pp.
183
195
.10.1016/S0308-0161(96)00029-4
24.
Malik
,
M. A.
,
Qureshi
,
M. E.
, and
Dar
,
N. U.
,
2007
, “
Numerical Simulation of Arc Welding Investigation of Various Process and Heat Source Parameters
,”
Failure Eng. Struct.
,
30
, pp.
127
142
. Available at http://web.uettaxila.edu.pk/uet/FEMS(2007)/FullPapers/paper30.pdf.
25.
Gery
,
D.
,
Long
,
H.
, and
Maropoulos
,
P.
,
2005
, “
Effects of Welding Speed, Energy Input and Heat Source Distribution on Temperature Variations in Butt-Joint Welding
,”
J. Mater. Process. Technol.
,
167
, pp.
393
401
.10.1016/j.jmatprotec.2005.06.018
26.
Deng
,
D.
, and
Murakawa
,
H.
,
2008
, “
Finite Analysis of Temperature field, microstructure and Residual Stress in Milti-Pass Butt-Welded 2.25 Cr-1Mo Steel Pipes
,”
Comput. Mater. Sci.
,
43
, pp.
681
695
.10.1016/j.commatsci.2008.01.025
27.
Nonaka
,
I.
,
Ito
,
T.
,
Ohtsuki
,
S.
, and
Yakagi
,
Y.
,
2001
, “
Performance of Repair Welds on Aged 2.25 Cr-1Mo Boiler Header Welds
,”
Int. J. Pressure Vessels Piping
,
78
, pp.
807
811
.10.1016/S0308-0161(01)00093-X
28.
Sattari-Far
,
T.
, and
Javadi
,
Y.
,
2008
, “
Influence of Welding Sequence on Welding Distortions on Pipes
,”
Int. J. Pressure Vessels Piping
,
85
, pp.
265
274
.10.1016/j.ijpvp.2007.07.003
29.
Ozcatalbas
,
Y.
, and
Vural
,
H. I.
,
2009
, “
Determination of Optimal Welding Sequence and Distortion Forces in Steel Lattice Beams
,”
J. Mater. Process. Technol.
,
209
, pp.
599
604
.10.1016/j.jmatprotec.2008.02.051
30.
Gannon
,
L.
,
Liu
,
Y.
,
Pegg
,
N.
, and
Smith
,
M.
,
2010
, “
Effect of Welding Sequence on Residual Stress and Distortion in Flat Bar Stiffened Plates
,”
Mar. Struct.
,
23
, pp.
385
404
.10.1016/j.marstruc.2010.05.002
31.
Michizuki
,
M.
,
2007
, “
Control of Welding Residual Stress for Ensuring Integrity Against Fatigue and Stress-Corrosion Cracking
,”
Nucl. Eng. Des.
,
237
, pp.
107
123
.10.1016/j.nucengdes.2006.05.006
32.
Lee
,
C.-H.
, and
Chang
,
K.-H.
,
2009
, “
Effect of the Welding Sequence in the Circumferential Direction of Residual Stress Distribution in a Thin-Walled Pipe Weld
,”
Proc. Inst. Mech. Eng., Part B
,
223
(
6
), pp.
723
735
.10.1243/09544054JEM1362
33.
Ji
,
S. D.
,
Fang
,
H. Y.
,
Liu
,
X. S.
, and
Meng
,
G. Q.
,
2005
, “
Influence of a Welding Sequence on the Welding Residual Stress of a Thick Plate
,”
Modell. Simul. Mater. Sci. Eng.
,
13
(
4
), pp.
553
565
.10.1088/0965-0393/13/4/006
34.
Jiang
,
W.
, and
Yahiaoui
,
K.
,
2012
, “
Effect of Welding Sequence on Residual Stress Distribution in a Multi-pass Welded Branch Junction
,”
Int. J. Pressure Vessels Piping
,
95
, pp.
39
47
.10.1016/j.ijpvp.2012.05.006
35.
Sterjovski
,
Z.
,
Dunne
,
D. P.
, and
Ambrose
,
S.
,
2004
, “
Evaluation of Cross-Weld Properties of Quenched and Tempered Pressure Vessel Steel Before and After PWHT
,”
Int. J. Pressure Vessels Piping
,
81
, pp.
465
470
.10.1016/j.ijpvp.2003.12.007
36.
Maleki
,
M.
,
Farrahi
,
G. H.
,
Haghpanah Jahromi
,
B.
, and
Hosseinian
,
E.
,
2010
, “
Residual Stress Analysis of Autofrettaged Thick-walled Spherical Pressure Vessel
,”
Int. J. Pressure Vessels Piping
,
87
, pp.
396
401
.10.1016/j.ijpvp.2010.04.002
37.
Lee
,
S.-I.
, and
Koh
,
S.-K.
,
2002
, “
Residual Stress Effects on the Fatigue Life of an Externally Grooved Thick—Walled Pressure Vessel
,”
Int. J. Pressure Vessels Piping
,
79
, pp.
119
126
.10.1016/S0308-0161(01)00132-6
38.
Koh
,
S.-K.
,
2000
, “
Fatigue Analysis of Autofrettaged Pressure Vessels With Radial Holes
,”
Int. J. Fatigue
,
22
, pp.
717
726
.10.1016/S0142-1123(00)00040-2
39.
Molzen
,
M. S.
, and
Hornbach
,
D.
,
2000
,
Evaluation of Welding Residual Stress Levels Through Shot Peening and Heat Treating
, SAE Technical Paper No. 2000-01-2564.
40.
Floyd
,
T.
,
1985
, “
Use of Short Peening to Toughen Welds
,”
Weld. Des. Fabr.
,
58
, pp.
68
70
.
41.
Kunaporn
,
S.
,
Ramulu
,
M.
,
Hashish
,
M.
, and
Hopkins
,
J.
,
2001
, “
Ultra High Pressure Waterjet Peening Part II: High Cycle Fatigue Performance
,”
Proceedings of the WJTA American Waterjet Conference
, August 18–21.
42.
Aloraier
,
A.
,
Al-Mazrouee
,
A.
,
Price
,
J. W. H.
, and
Shehata
,
T.
,
2010
, “
Weld Repair Practices Without Post Weld Heat Treatment for Ferritic Alloys and Their Consequences on Residual Stresses: A Review
,”
Int. J. Pressure Vessels Piping
,
87
, pp.
127
133
.10.1016/j.ijpvp.2010.02.001
43.
Feng
,
Z.
,
2005
,
Processes and Mechanisms of Welding Residual Stress and Distortion
,
Woodhead Publishing in Materials
,
Cambridge, UK
.
44.
Fatemi
,
A.
,
2011
, “
Fatigue Tests and Stress-Life (S-N) Approach. Lecture Notes
,” University of Toledo, OH. Available at: https://www.efatigue.com/training/Chapter_4.pdf, last accessed 24 Sept. 2013.
45.
Kumar
,
S. R. S.
, and
Kumar
,
A. R. S.
,
2006
, “
Design of Steel Structures
,” Lecture Notes, Indian Institute of Technology, Madras, India.
46.
Scharenberg
,
R.
,
2008
, “
DLR in Space, Aeronautical, Transport and Energy
,”
International Conference in Bio-, Nano- and Space Technologies, EU and Science Centres Collaboration
,
Ljubljana, Slovenia
.
You do not currently have access to this content.