Fretting-wear is a common problem in different industries, especially when it comes to interactions between metallic components. Flow-induced excitation forces in heat exchangers for instance cause tube-support interactions. The long-term interaction is an important phenomenon, which may cause fretting-wear of the tubes. Experimental tests of the interaction show the occurrence of stick–slip intermittent behavior in the tube response. To precisely simulate the intermittent stick–slip behavior, it is crucial to refine the conceptual model of the coefficient of friction for the entire motion from absolute zero velocity to gross slip phase. The incorporated friction model plays an important role in the determination of the level of fretting-wear in the system. The friction model should satisfy two important criteria. The first important aspect is the strategy of the friction model to detect the cessation of sticking, the beginning of partial-slipping, and establishment of the sliding region. The second important aspect is defining a friction coefficient function for the entire system response to precisely represent the transient stick–slip regions. In the present work, the velocity-limited friction model was compared with the LuGre model, which is a rate-dependent friction model. The effect of varying the break-away force and Stribeck effect on the stick–slip region were also investigated. Furthermore, the criteria to demarcate the stick–slip region in the LuGre model are discussed, and a different method to incorporate the Stribeck effect and presliding damping in the Dahl friction model is proposed. Using the tangential stress distribution in the contact area, a new hybrid spring-damper friction model is developed. The model is able to estimate the elastic, plastic, and partial-slipping distances during the relative motion. The ability of the model to reproduce experimental tests is investigated in the present work.

References

References
1.
Ko
,
P. L.
,
1987
, “
Metallic Wear-A Review, With Special References to Vibration-Induced Wear in Power Plant Components
,”
Tribol. Int.
,
20
(
2
), pp.
66
78
.10.1016/0301-679X(87)90092-2
2.
Gessesse
,
Y. B.
,
1997
, “
On the Fretting Wear of Nuclear Power Plant Heat Exchanger Tubes Using a Fracture Mechanics Approach: Theory and Verification
,” Ph.D. thesis, Concordia University, Montreal, Quebec, Canada.
3.
Suh
,
N. P.
,
1973
, “
The Delamination Theory of Wear
,”
Wear
,
25
(
1
), pp.
111
124
.10.1016/0043-1648(73)90125-7
4.
Gauland
,
D. J.
, and
Duquette
D. J.
,
1980
, “
Cyclic Wear Behavior (Fretting) of a Tempered Martensite Steel
,”
Metall. Trans.
,
11
(
9
), pp.
1581
1588
.10.1007/BF02654522
5.
Fouvry
,
S.
,
Kapsa
,
P.
,
Zahouani
,
H.
, and
Vincent
,
L.
,
1997
, “
Wear Analysis in Fretting of Hard Coatings Through a Dissipated Energy Concept
,”
Wear
,
203–204
, pp.
393
403
.10.1016/S0043-1648(96)07436-4
6.
Fleming
,
J. R.
, and
Suh
,
N. P.
,
1977
, “
Mechanics of Crack Propagation in Delamination Wear
,”
Wear
,
44
, pp.
39
56
.10.1016/0043-1648(77)90083-7
7.
Pettigrew
,
M. J.
, and
Taylor
,
C. E.
,
2003
, “
Vibration Analysis of Shell-and-Tube Heat Exchangers: An Overview—Part 2: Vibration Response, Fretting-Wear, Guidelines
,”
J. Fluids Struct.
,
18
(
5
), pp.
485
500
.10.1016/j.jfluidstructs.2003.08.008
8.
Haslinger
,
K. H.
, and
Steininger
,
D. A.
,
1995
, “
Experimental Characterization of Sliding and Impact Friction Coefficients Between Steam Generator Tubes and Avb Supports
,”
J. Sound Vib.
,
181
(
5
), pp.
851
871
.10.1006/jsvi.1995.0174
9.
Baumberger
,
T.
,
Heslot
,
F.
, and
Perrin
,
B.
,
1994
, “
Crossover From Creep to Inertial Motion in Friction Dynamics
,”
Nature
,
367
(
6463
), pp.
544
546
.10.1038/367544a0
10.
Heslot
,
F.
,
Baumberger
,
T.
, and
Perrin
,
B.
,
1994
, “
Creep, Stick-Slip, and Dry-Friction Dynamics: Experiments and a Heuristic Model
,”
Phys. Rev. E
,
49
(
6
), pp.
4973
4988
.10.1103/PhysRevE.49.4973
11.
Rabinowicz
,
E.
,
1951
, “
The Nature of the Static and Kinetic Coefficients of Friction
,”
J. Appl. Phys.
,
22
(
11
), pp.
1373
1379
.10.1063/1.1699869
12.
Lim
,
Y. F.
, and
Chen
,
K.
,
1998
, “
Dynamics of Dry Friction: A Numerical Investigation
,”
Phys. Rev. E
,
58
(
5
), pp.
5637
5642
.10.1103/PhysRevE.58.5637
13.
Ozaki
,
S.
, and
Hashiguchi
,
K.
,
2010
, “
Numerical Analysis of Stick-Slip Instability by a Rate-Dependent Elastoplastic Formulation for Friction
,”
Tribol. Int.
,
43
(
11
), pp.
2120
2133
.10.1016/j.triboint.2010.06.007
14.
De Wit
,
C. C.
,
Olsson
,
H.
,
Astrom
,
K. J.
, and
Lischinsky
,
P.
,
1995
, “
A New Model for Control of Systems With Friction
,”
IEEE Trans. Autom. Control
,
40
(
3
), pp.
419
425
.10.1109/9.376053
15.
Rogers
,
R. J.
, and
Pick
,
R. J.
,
1977
, “
Factors Associated With Support Plate Forces Due to Heat-Exchanger Tube Vibratory Contact
,”
Nucl. Eng. Des.
,
44
(
2
), pp.
247
253
.10.1016/0029-5493(77)90031-0
16.
Sauve
,
R. G.
, and
Teper
,
W. W.
,
1987
, “
Impact Simulation of Process Equipment Tubes and Support Plates—A Numerical Algorithm
,”
ASME J. Pressure Vessel Technol.
,
109
(
1
), pp.
70
79
.10.1115/1.3264858
17.
Toorani, M., Pan, L., Li, R., Vincent, B., and Idvorian, N.,
2009
, “
Advanced Nonlinear Flow-Induced Vibration and Fretting-Wear Analysis Capabilities
,”
6th CNS International Steam Generator Conference
, Toronto, Canada.
18.
Mindlin
,
R. D.
,
1949
, “
Compliance of Elastic Bodies in Contact
,”
ASME J. Appl. Mech.
,
16
(
3
), pp.
259
268
.
19.
Ödfalk
,
M.
, and
Vingsbo
,
O.
,
1992
, “
An Elastic-Plastic Model for Fretting Contact
,”
Wear
,
157
(
2
), pp.
435
444
.10.1016/0043-1648(92)90080-R
20.
Mindlin
,
R. D.
, and
Deresiewicz
,
H.
,
1953
, “
Elastic Spheres in Contact under Varying Oblique Forces
,”
ASME J. Appl. Mech.
,
20
, pp.
327
344
.
21.
De Wit
,
C. C.
,
Olsson
,
H.
,
Astrom
,
K. J.
, and
Lischinsky
,
P.
,
1995
, “
A New Model for Control of Systems With Friction
,”
IEEE Trans. Autom. Control
,
40
(
3
), pp.
419
425
.10.1109/9.376053
22.
Astrom
,
K. J.
, and
De Wit
,
C. C.
,
2008
, “
Revisiting the LuGre Friction Model
,”
IEEE Control Syst. Mag.
,
28
(
6
), pp.
101
114
.10.1109/MCS.2008.915312
23.
Hassan
,
M. A.
, and
Rogers
,
R. J.
,
2005
, “
Friction Modelling of Preloaded Tube Contact Dynamics
,”
Nucl. Eng. Des.
,
235
(
22
), pp.
2349
2357
.10.1016/j.nucengdes.2005.05.004
24.
Tan
,
X.
, and
Rogers
,
R.
,
1996
, “
Dynamic Friction Modelling in Heat Exchanger Tube Simulations
,”
ASME Flow-Induced Vibrations, Montreal, Canada
,
ASME
,
New York, NY
, pp.
347
358
.
25.
Tariku
,
F. A.
, and
Rogers
,
R. J.
,
2001
, “
Improved Dynamic Friction Models for Simulation of One-Dimensional and Two-Dimensional Stick-Slip Motion
,”
ASME J. Tribol.
,
123
(
4
), pp.
661
669
.10.1115/1.1331057
26.
Karnopp
,
D.
,
1985
, “
Computer Simulation of Stick-Slip Friction in Mechanical Dynamic Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
107
(
1
), pp.
100
103
.10.1115/1.3140698
27.
Antunes
,
J.
,
Axisa
,
F.
,
Beaufils
,
B.
, and
Guilbaud
,
D.
,
1990
, “
Coulomb Friction Modelling in Numerical Simulations of Vibration and Wear Work Rate of Multispan Tube Bundles
,
J. Fluids Struct.
,
4
(
3
), pp.
287
304
.10.1016/S0889-9746(05)80016-7
28.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University
,
Cambridge, England
.
29.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
,
1971
, “
Surface Energy and the Contact of Elastic Solids
,”
Proc. R. Soc. London
,
324
(
1558
), pp.
301
313
.10.1098/rspa.1971.0141
30.
Rice
,
J. R.
, and
Ruina
,
A. L.
,
1983
, “
Stability of Steady Frictional Slipping
,”
ASME J. Appl. Mech.
,
50
(
2
), pp.
343
349
.10.1115/1.3167042
31.
Armstrong-Helouvry
,
B.
,
1991
,
Control of Machines With Friction
,
Kluwer
,
Boston, MA
.
32.
Armstrong
,
B.
,
Control of Machines With Non-Linear, Low-Velocity Friction: A Dimensional Analysis, in Experimental Robotics I1990
,
Springer
,
Heidelberg, Germany
, pp.
180
195
.
33.
Armstrong
,
D.
, and
Canudas
,
C.
,
1994
, “
A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines With Friction
,”
Automatica
,
30
(
7
), pp.
1083
1138
.10.1016/0005-1098(94)90209-7
34.
Johannes
,
V. I.
,
Green
,
M. A.
, and
Brockley
,
C. A.
,
1973
, “
The Role of the Rate of Application of the Tangential Force in Determining the Static Friction Coefficient
,”
Wear
,
24
(
3
), pp.
381
385
.10.1016/0043-1648(73)90166-X
35.
Wojewoda
,
J.
,
Stefański
,
A.
,
Wiercigroch
,
M.
, and
Kapitaniak
,
T.
,
2008
, “
Hysteretic Effects of Dry Friction: Modelling and Experimental Studies
,”
Philos. Trans. R. Soc. London, Ser. A
,
366
(
1866
), pp.
747
765
.10.1098/rsta.2007.2125
36.
Dahl
,
P. R.
,
1968
, “
A Solid Friction Model
,”
Space and Missile Systems Organization Air Force Systems Command
, Technical Report TR-77-131.
37.
Ödfalk
,
M.
, and
Vingsbo
,
O.
,
1990
, “
Influence of Normal Force and Frequency in Fretting
,”
Tribol. Trans.
,
33
(
4
), pp.
604
610
.10.1080/10402009008981995
38.
Johnson
,
K. L.
,
1961
Energy Dissipation at Spherical Surfaces in Contact Transmitting Oscillating Forces
,”
J. Mech. Eng. Sci.
,
3
(
4
), pp.
362
368
.10.1243/JMES_JOUR_1961_003_048_02
39.
Johnson
,
K. L.
,
1955
, “
Surface Interaction Between Elastically Loaded Bodies Under Tangential Forces
,”
Proc. R. Soc. London, Ser. A
,
230
(
1183
), pp.
531
548
.10.1098/rspa.1955.0149
You do not currently have access to this content.