The impact force on an elbow induced by traveling isolated liquid slugs in a horizontal pipeline is studied. A literature review reveals that the force on the elbow is mainly due to momentum transfer in changing the fluid flow direction around the elbow. Therefore, to accurately calculate the magnitude and duration of the impact force, the slug arrival velocity at the elbow needs to be well predicted. The hydrodynamic behavior of the slug passing through the elbow needs to be properly modeled too. A combination of 1D and 2D models is used in this paper to analyze this problem. The 1D model is used to predict the slug motion in the horizontal pipeline. With the obtained slug arrival velocity, slug length, and driving air pressure as initial conditions, the 2D Euler equations are solved by the smoothed particle hydrodynamics (SPH) method to analyze the slug dynamics at the elbow. The 2D SPH solution matches experimental data and clearly demonstrates the occurrence of flow separation at the elbow, which is a typical effect of high Reynolds flows. Using the obtained flow contraction coefficient, an improved 1D model with nonlinear elbow resistance is proposed and solved by SPH. The 1D SPH results show the best fit with experimental data obtained so far.

References

1.
Mandhane
,
J. M.
,
Gregory
,
G. A.
, and
Aziz
,
K.
,
1974
, “
A Flow Pattern Map for Gas-Liquid Flow in Horizontal Pipes
,”
Int. J. Multiphase Flow
,
1
(4), pp.
537
553
.10.1016/0301-9322(74)90006-8
2.
Dukler
,
A. E.
, and
Hubbard
,
M. G.
,
1975
, “
A Model for Gas-Liquid Slug Flow in Horizontal and Near Horizontal Tubes
,”
Ind. Eng. Chem. Fundam.
,
14
(4), pp.
337
347
.10.1021/i160056a011
3.
Taitel
,
Y.
, and
Dukler
,
A. E.
,
1977
, “
A Model for Slug Frequency During Gas-Liquid Flow in Horizontal and Near Horizontal Pipes
,”
Int. J. Multiphase Flow
,
3
(6), pp.
585
596
.10.1016/0301-9322(77)90031-3
4.
Taitel
,
Y.
, and
Dukler
,
A. E.
,
1976
, “
A Model for Predicting Flow Regime Transitions in Horizontal and Near Horizontal Gas-Liquid Flow
,”
AIChE J.
,
22
(1), pp.
47
55
.10.1002/aic.690220105
5.
Taitel
,
Y.
,
Barnea
,
D.
, and
Dukler
,
A. E.
,
1980
, “
Modelling Flow Pattern Transitions for Steady Upward Gas-Liquid Flow in Vertical Tubes
,”
AIChE J.
,
26
(3), pp.
345
354
.10.1002/aic.690260304
6.
Dukler
,
A. E.
,
Maron
,
D. M.
, and
Brauner
,
N.
,
1985
, “
A Physical Model for Predicting the Minimum Stable Slug Length
,”
Chem. Eng. Sci.
,
40
(8), pp.
1379
1386
.10.1016/0009-2509(85)80077-4
7.
Fabre
,
J.
, and
Liné
,
A.
,
1992
, “
Modeling of Two-Phase Slug Flow
,”
Annu. Rev. Fluid Mech.
,
24
, pp.
21
46
.10.1146/annurev.fl.24.010192.000321
8.
Sakaguchi
,
T.
,
Ozawa
,
M.
,
Hamaguchi
,
H.
,
Nishiwaki
,
F.
, and
Fujii
,
E.
,
1987
, “
Analysis of the Impact Force by a Transient Slug Flowing out of a Horizontal Pipe
,”
Nucl. Eng. Des.
,
99
, pp.
63
71
.10.1016/0029-5493(87)90108-7
9.
Zhang
,
H. Q.
,
Jayawardena
,
S. S.
,
Redus
,
C. L.
, and
Brill
,
J. P.
,
2000
, “
Slug Dynamics in Gas-Liquid Pipe Flow
,”
J. Energy Res. Technol.
,
122
(1), pp.
14
21
.10.1115/1.483156
10.
Tay
,
B. L.
, and
Thorpe
,
R. B.
,
2004
, “
Effects of Liquid Physical Properties on the Forces Acting on a Pipe Bend in Gas-Liquid Slug Flow
,”
Trans. IChemE, Part A, Chem. Eng. Res. Des.
,
82
(
A3
), pp.
344
356
.10.1205/026387604322870453
11.
Das
,
I. A. F.
,
2003
, “
The Characteristics and Forces due to Slugs in an “S” Shaped Riser
,” Ph.D. thesis, Cranfield University, Cranfield, UK.
12.
Owen
,
I.
, and
Hussein
,
I. B.
,
1994
, “
The Propulsion of an Isolated Slug Through a Pipe and the Forces Produced as it Impacts Upon an Orifice Plate
,”
Int. J. Multiphase Flow
,
20
(
3
), pp.
659
666
.10.1016/0301-9322(94)90036-1
13.
Fenton
,
R. M.
, and
Griffith
,
P.
,
1990
, “
The Force at a Pipe Bend Due to the Clearing of Water Trapped Upstream
,” Transient Thermal Hydraulics and Resulting Loads on Vessel and Piping Systems, ASME, PVP190, pp.
59
67
.
14.
Bozkus
,
Z.
,
1991
, “
The Hydrodynamics of an Individual Transient Liquid Slug in a Voided Line
,” Ph.D. thesis, Michigan State University, East Lansing, MI.
15.
Yang
,
J.
, and
Wiggert
,
D. C.
,
1998
, “
Analysis of Liquid Slug Motion in a Voided Line
,”
ASME J. Pressure Vessel Technol.
,
120
(1), pp.
74
80
.10.1115/1.2841889
16.
Bozkus
,
Z.
,
Baran
,
Ö. U.
, and
Ger
,
M.
,
2004
, “
Experimental and Numerical Analysis of Transient Liquid Slug Motion in a Voided Line
,”
ASME J. Pressure Vessel Technol.
,
126
(2), pp.
241
249
.10.1115/1.1688781
17.
Neumann
,
A.
,
1991
, “
The Forces Exerted on a Pipe Bend due to a Pipe Clearing Transient
,” M.Sc. thesis, MIT, Cambridge, MA.
18.
Bozkus
,
Z.
, and
Wiggert
,
D. C.
,
1997
, “
Liquid Slug Motion in a Voided Line
,”
J. Fluids Struct.
,
11
(8), pp.
947
963
.10.1006/jfls.1997.0112
19.
Kayhan
,
B. A.
, and
Bozkus
,
Z.
,
2011
, “
A New Method for Prediction of the Transient Force Generated by a Liquid Slug Impact on an Elbow of an Initially Voided Line
,”
ASME J. Pressure Vessel Technol.
,
133
(2), p.
021701
.10.1115/1.4002626
20.
De Martino
,
G.
,
Fontana
,
N.
, and
Giugni
,
M.
,
2008
, “
Transient Flow Caused by Air Expulsion Through an Orifice
,”
J. Hydraul. Eng.
,
134
(
9
), pp.
1395
1399
.10.1061/(ASCE)0733-9429(2008)134:9(1395)
21.
Kayhan
,
B. A.
,
2009
, “
Prediction of the Transient Force Subsequent to a Liquid Mass Impact on an Elbow of an Initially Voided Line
,” Ph.D. thesis, Middle East Technical University, Ankara, Turkey.
22.
Streeter
,
V. L.
,
Wylie
,
E. B.
, and
Bedford
,
K. W.
,
1998
,
Fluid Mechanics
, 9th ed.,
McGraw-Hill
,
Boston
.
23.
Laanearu
,
J.
,
Annus
,
I.
,
Koppel
,
T.
,
Bergant
,
A.
,
Vučkovič
,
S.
,
Hou
,
Q.
,
Tijsseling
,
A. S.
,
Anderson
,
A.
, and
van't Westende
,
J. M. C.
,
2012
, “
Emptying of Large-Scale Pipeline by Pressurized Air
,”
J. Hydraul. Eng.
,
138
(12), pp.
1090
1100
.10.1061/(ASCE)HY.1943-7900.0000631
24.
Lichtarowicz
,
A.
, and
Markland
,
E.
,
1963
, “
Calculation of Potential Flow With Separation in a Right-Angled Elbow With Unequal Branches
,”
J. Fluid Mech.
,
17
(4), pp.
596
606
.10.1017/S0022112063001531
25.
Mankbadi
,
R. R.
, and
Zaki
,
S. S.
,
1986
, “
Computations of the Contraction Coefficient of Unsymmetrical Bends
,”
AIAA J.
,
24
(8), pp.
1285
1289
.10.2514/3.9433
26.
Chu
,
S. S.
,
2003
, “
Separated Flow in Bends of Arbitrary Turning Angles, Using the Hodograph Method and Kirchhoff's Free Streamline Theory
,”
ASME J. Fluids Eng.
,
125
(3), pp.
438
442
.10.1115/1.1567311
27.
Hou
,
Q.
,
Kruisbrink
,
A. C. H.
,
Pearce
,
F. R.
,
Tijsseling
,
A. S.
, and
Yue
,
T.
, “
Smoothed Particle Hydrodynamics Simulations of Flow Separation at Bends
,”
Comput. Fluids.
, 90, pp. 138–146.
28.
Monaghan
,
J. J.
,
1992
, “
Smoothed Particle Hydrodynamics
,”
Annu. Rev. Astron. Astrophys.
,
30
, pp.
543
574
.10.1146/annurev.aa.30.090192.002551
29.
Rosswog
,
S.
,
2009
, “
Astrophysical Smooth Particle Hydrodynamics
,”
New Astron. Rev.
,
53
(4-6), pp.
78
104
.10.1016/j.newar.2009.08.007
30.
Springel
,
V.
,
2010
, “
Smoothed Particle Hydrodynamics in Astrophysics
,”
Annu. Rev. Astron. Astrophys.
,
48
, pp.
391
430
.10.1146/annurev-astro-081309-130914
31.
Libersky
,
L. D.
,
Petschek
,
A. G.
,
Carney
,
T. C.
,
Hipp
,
J. R.
, and
Allahdadi
,
F. A.
,
1993
, “High strain Lagrangian hydrodynamics: A three-dimensional SPH code for dynamic material response,” J. Comput. Phys., 109(1), pp. 67–75.
32.
Monaghan
,
J. J.
,
1994
, “
Simulating Free Surface Flows With SPH
,”
J. Comput. Phys.
,
110
(2), pp.
399
406
.10.1006/jcph.1994.1034
33.
Liu
,
M. B.
, and
Liu
,
G. R.
,
2010
, “
Smoothed Particle Hydrodynamics (SPH): An Overview and Recent Developments
,”
Arch. Comput. Methods. Eng.
,
17
(1), pp.
25
76
.10.1007/s11831-010-9040-7
34.
Monaghan
,
J. J.
,
2012
, “
Smoothed Particle Hydrodynamics and Its Diverse Applications
,”
Annu. Rev. Fluid Mech.
,
44
, pp.
323
346
.10.1146/annurev-fluid-120710-101220
35.
Price
,
D. J.
,
2012
, “
Smoothed Particle Hydrodynamics and Magnetohydrodynamics
,”
J. Comput. Phys.
,
231
(3), pp.
759
794
.10.1016/j.jcp.2010.12.011
36.
Lastiwka
,
M.
,
Basa
,
M.
, and
Quinlan
,
N. J.
,
2009
, “
Permeable and Non-Reflecting Boundary Conditions in SPH
,”
Int. J. Numer. Meth. Fluids
,
61
(7), pp.
709
724
.10.1002/fld.1971
37.
Hou
,
Q.
,
Kruisbrink
,
A. C. H.
,
Tijsseling
,
A. S.
, and
Keramat
,
A.
,
2012
, “
Simulating Transient Pipe Flow With Corrective Smoothed Particle Method
,”
Proceedings of 11th International Conference on Pressure Surges
, BHR Group, Lisbon, Portugal, pp.
171
188
.
38.
Molteni
,
D.
, and
Colagrossi
,
A.
,
2009
, “
A Simple Procedure to Improve the Pressure Evaluation in Hydrodynamic Context Using the SPH
,”
Comput. Phys. Commun.
,
180
(6), pp.
861
872
.10.1016/j.cpc.2008.12.004
39.
Hou
,
Q.
,
2012
, “
Simulating Unsteady Conduit Flows With Smoothed Particle Hydrodynamics
,” Ph.D. thesis, Eindhoven University of Technology, Eindhoven, The Netherlands. Available at:http://repository.tue.nl/733420
40.
Hou
,
Q.
,
Zhang
,
L. X.
,
Tijsseling
,
A. S.
, and
Kruisbrink
,
A. C. H.
,
2012
, “
Rapid Filling of Pipelines With the SPH Particle Method
,”
Procedia Eng.
,
31
, pp.
38
43
.10.1016/j.proeng.2012.01.987
41.
Crane
,
1985
, “
Flow of Fluids Through Valves, Fittings, and Pipe
,” Technical Paper 410, Crane Co.
42.
Garcia
,
D.
,
2010
, “
Robust Smoothing of Gridded Data in One and Higher Dimensions With Missing Values
,”
Comput. Stat. Data Anal.
,
54
(4), pp.
1167
1178
.10.1016/j.csda.2009.09.020
You do not currently have access to this content.