The aim of this paper is to investigate the effect of crack depth a/W = 0–0.4 and load angle (30 deg, 45 deg, and 60 deg) on the limit load of miter pipe bends (MPB) under out-of-plane bending moment with a crosshead speed 500 mm/min. The geometry of cracked and un-cracked multi miter pipe bends are: bend angle, α = 90 deg, pipe bend factor, h = 0.844, standard dimension ratio, SDR = 11, and three junctions, m = 3. The material of the investigated pipe is a high-density polyethylene (HDPE), which is applied in natural gas piping systems. Butt-fusion welding is used to produce the welds in the miter pipe bends. An artificial crack is produced by a special cracking device. The crack is located at the crown side of the miter pipe bend, such that the crack is collinear with the direction of the applied load. The crack depth ratio, a/W = 0, 0.1, 0.2, 0.3, and 0.4 for out-of-plane bending moment “i.e., loading angle ϕ = 0 deg”. For each out-of-plane bending moment and all closing and opening load angles the limit load is obtained by the tangent intersection method (TI) from the load deflection curves produced by the specially designed and constructed testing machine at the laboratory (Mechanical Design Department, Faculty of Engineering, Mataria, Helwan University, Cairo/Egypt). For each out-of-plane bending moment case, the experimental results reveals that increasing crack depth leads to a decrease in the stiffness and limit load of MPB. In case of combined load (out-of-plane and in-plane opening; mode) higher load angles lead to an increase in the limit load. The highest limit load value appears at a loading angle equal, ϕ = 60 deg. In case of combined load (out-of-plane and in-plane closing; mode) the limit load decreases upon increasing the load angle. On the other hand, higher limit load values appear at a specific loading angle equal ϕ = 30 deg. For combined load opening case; higher values of limit load are obtained. Contrarily, lower values are obtained in the closing case.

References

References
1.
Watanabe
,
O.
, and
Ohtsubo
,
H.
,
1984
, “
Stress Analysis of Mitred Bends by Ring Elements
,”
ASME J. Pressure Vessel Technol.
,
106
(
1
), pp.
54
62
.10.1115/1.3264309
2.
Bantlin
,
A.
,
1910
, “
Formanderung und Beansprüchung federnder Ausgleichrohre
,”
Z. Ver. Dtsch. Ing.
,
54
, pp.
43
49
.
3.
Von Karman
,
Th.
,
1911
, “
Uber die Formanderung dunnwandiger Rohre, insbesondere federnder Ausgleichrohre
,”
Z. Ver. Dtsch. Ing.
,
55
, pp.
1889
1895
.
4.
Vigness
,
I.
,
1943
, “
Elastic Properties of Curved Tubes
,”
Trans. ASME
,
65
, pp.
105
120
.
5.
Gross
,
N.
,
1952–1953
, “
Experiments on Short-Radius Pipe Bends
,”
Proc. Inst. Mech. Eng., Part B
,
1
, pp.
465
479
.
6.
Marcal
,
P. V.
, and
Turner
,
C. E.
,
1961
, “
Elastic Solution in the Limit Analysis of Shells of Revolution With Special Reference to Expansion Bellows
,”
J. Mech. Eng. Sci.
,
3
(
3
), pp.
252
257
.10.1243/JMES_JOUR_1961_003_032_02
7.
Marcal
,
P. V.
,
1967
, “
Elastic-Plastic Behaviour of Pipe Bends With In-Plane Bending
,”
J. Strain Anal. Eng. Des.
,
2
(
1
), pp.
84
90
.10.1243/03093247V021084
8.
Calladine
,
C. R.
,
1974
, “
Limit Analysis of Curved Tubes
,”
J. Mech. Eng. Sci.
,
16
, pp.
85
87
.10.1243/JMES_JOUR_1974_016_016_02
9.
Dowling
,
A. R.
, and
Townley
,
C. H. A.
,
1975
, “
The Effect of Defects on Structural Failure: A Two-Criterion Approach
,”
Int. J. Pressure Vessels Piping
,
3
, pp.
77
107
.10.1016/0308-0161(75)90014-9
10.
Goodall
,
I. W.
,
1978
, “
Lower Bound Limit Analysis of Curved Tubes Loaded by Combined Internal Pressure and In-Plane Bending Moment
,” Research Division Report RD/B/N4360, Central Electricity Generating Board, England, p.
14
.
11.
Griffiths
,
J. E.
,
1979
, “
The Effect of Cracks on the Limit Load of Pipe Bends Under In-Plane Bending: Experimental Study
,”
Int. J. Mech. Sci.
,
21
, pp.
119
130
.10.1016/0020-7403(79)90038-9
12.
Zahoor
,
A.
,
1991
, “
Ductile Fracture Handbook
,” Vol.
3
, Electric Power Research Institute, Palo Alto, CA, EPRI-NP-6301-D, N14-1, Research Project 1757–69.
13.
Chain
,
K. L. C.
, Boyle, J. T., and Spence, J.,
1984
, “
Approximate Limit Load Analysis of Pipe Bends With end Constraints
,”
Applied Solid Mechanics-1
,
A. S.
Tooth
and
J. T.
Boyle
, eds.,
Elsevier
,
New York
, pp.
275
285
.
14.
Miller
,
A. G.
,
1988
, “
Review of Limit Loads of Structures Containing Defects
,”
Int. J. Pressure Vessels Piping
,
32
, pp.
191
327
.10.1016/0308-0161(88)90073-7
15.
Mourad
,
H. M.
, and
Younan
,
M. Y. A.
,
2000
, “
The Effect of Modeling Parameters on the Predicted Limit Loads for Pipe Bends Subjected to Out-of-Plane Moment Loading and Internal Pressure
,”
ASME J. Pressure Vessel Technol.
,
122
, pp.
450
456
.10.1115/1.1310334
16.
Greenstreet
,
W. L.
,
1978
, “
Experimental Study of Plastic Responses of Pipe Elbows
,” ORNL/NUREG-24.
17.
Shalaby
,
M. A.
,
1996
, “
Elastic-Plastic Behavior and Limit Load Analysis of Pipe Elbows Under in-Plane Bending and Internal Pressure
,” American University in Cairo, Cairo, Egypt.
18.
Shalaby
,
M. A.
, and
Younan
,
M. Y. A.
,
1998
, “
Limit Loads for Pipe Elbows With Internal Pressure Under In-Plane Closing Bending Moments
,”
ASME J. Pressure Vessel Technol.
,
120
, pp.
35
42
.10.1115/1.2841882
19.
Shalaby
,
M. A.
, and
Younan
,
M. Y. A.
,
1999
, “
Limit Loads for Pipe Elbows Subjected to In-Plane Opening Moments and Internal Pressure
,”
ASME J. Pressure Vessel Technol.
,
121
, pp.
17
23
.10.1115/1.2883661
20.
Chattopadhyay
,
J.
,
Tomar
,
A. K. S.
,
Dutta
,
B. K.
, and
Kushwaha
,
H. S.
,
2004
, “
Closed-Form TES Plastic Moment Equations of Through Wall Circumferentially Cracked Elbows Subject to In-Plane Bending Moment
,”
ASME J. Pressure Vessel Technol.
,
126
, pp.
307
317
.10.1115/1.1767177
21.
Kim
,
Y. J.
,
Kim
,
Y.-I.
, and
Song
,
T.-K.
,
2007
, “
Finite Element Plastic Loads for Circumferential Cracked Pipe Bends Under In-Plane Bending
,”
Eng. Fract. Mech.
,
74
, pp.
643
668
.10.1016/j.engfracmech.2006.07.001
22.
Mourad
,
H. M.
, and
Younan
,
M. Y. A.
,
2001
, “
Nonlinear Analysis of Pipe Bends Subjected to Out-of-Plane Moment Loading and Internal Pressure
,”
ASME J. Pressure Vessel Technol.
,
123
, pp.
253
456
–258.10.1115/1.1310335
23.
Song
,
T. K.
,
Kim
,
Y. J.
,
Oh
,
C. K.
,
Jin
,
T. E.
, and
Kim
,
J. S.
,
2009
, “
Net-Section Limit Moments and Approximate J Estimates for Circumferential Cracks at the Interface Between Elbows and Pipes
,”
Int. J. Pressure Vessels Piping
,
86
, pp.
495
507
.10.1016/j.ijpvp.2009.03.008
24.
Owen
,
B. S.
, and
Emmerson
,
W. C.
,
1963
, “
Elastic Stresses in Single Mitred Bends
,”
J. Mech. Eng. Sci.
,
5
(
4
), pp.
303
324
.10.1243/JMES_JOUR_1963_005_042_02
25.
Green
,
A. E.
, and
Emmerrson
,
W. C.
,
1961
, “
Stresses in a Pipe With Discontinuous Bend
,”
J. Mech. Phys. Solids
,
9
, pp.
91
104
.10.1016/0022-5096(61)90027-8
26.
Kitching
,
R.
,
1965
, “
Mitre Bends Subjected to In-Plane Bending Moments
,”
Int. J. Mech. Sci.
,
7
, pp.
551
575
.10.1016/0020-7403(65)90012-3
27.
Kitching
,
R.
,
Rahimi
,
G. H.
, and
So
,
H. S.
,
1989
, “
Plastic Collapse of Single Mitred Pipe Bends
,”
Int. J. Pressure Vessels Piping
,
38
, pp.
129
145
.10.1016/0308-0161(89)90009-4
28.
DIN 8074-1975, 1975, “
Pipes of High-Density Polyethylene (High-Density PE)
,” Type 1 Dimensions, pp.
99
102
.
29.
DIN 8074 Type 2, 1980, “
Pipes of High-Density Polyethylene (High-Density PE)
,” Type 2 Dimensions, pp.
103
105
.
30.
DIN 8075-1987, 1987, “
High-Density Polyethylene (HDPE)
,” General Quality Requirements Testing, pp.
1
5
.
31.
ASTM D2122-98, 2010, “
Standard Test Method for Determining Dimensions of Thermoplastic Pipe and Fittings
,” Annual Book of ASTM Standards. Part 8.04, Plastic Pipe and Building Products.
32.
British Standard
,
1998
, “
Methods of Testing Plastics
,” BS2782.
33.
British Gas Transco
,
1998
, “
Technical Specification for Polyethylene Pipes and Fittings for Natural Gas and Suitable Manufactured Gas
,” PL2: Part 8-Pipes for use at Pressure up to 7 bar.
34.
ASTM Standard D638M-10, “
Standard Test Method for Tensile Properties of Plastics (Metric)
,” Annual Book of ASTM Standards, Part 08.01, Plastics-General Test Method; pp.
59
67
.
35.
El-Bagory
,
T. M. A.
,
2010
, “
Failure Analysis of Polymeric Miter Pipe Bends Under Combined Loading
,” Ph.D., thesis, Faculty of Engineering Mattaria, Helwan University, Cairo, Egypt.
36.
DVS 2207-1, 2005-09, “
Welding Thermoplastic Plastics, Hard PE (Hard Polyethylene) Pipes, and Elements for Gas Water Pipelines
.
37.
ASTM D3261-03, 2012, “
Standard Test Method for Butt Fusion Polyethylene (PE) Plastic Fittings for Polyethylene (PE) Plastic Pipe and Tubing
” Annual Book of ASTM Standards, Part 8.04, Plastic Pipe and Building Products.
38.
DIN 16963 Part 1,
1980
, “
Pipe Joints and Elements for High Density Polyethylene (HDPE) Pressure Pipelines
,” Types 1 and 2 Pipe Bends of Segments for Butt-Welding Dimensions.
39.
ASTM F 1473-97, 2001e1, “
Standard Test Method for Notch Tensile Test to Measure the Resistance to Slow Crack Growth of Polyethylene Pipes and Resins
,” Annual Book of ASTM Standards, Part 8.04, Plastic Pipe and Building Products.
40.
The American Society for Mechanical Engineers, ASME,
Boiler and Pressure Vessel Code
,
2004
, Section VIII, Division 2, Appendix 6, pp.
6
153
.
41.
EN 13445-3,
2002
, “
European Standard for Unfired Pressure Vessels—Part 3: Design
,” European Committee for Standardization (CEN).
42.
Robertson
,
A.
,
Li
,
H.
, and
Mackenzie
,
D.
,
2005
, “
Plastic Collapse of Pipe Bends Under Combined Internal Pressure and In-Plane Bending
,”
Int. J. Pressure Vessels Piping
,
82
, pp.
407
416
.10.1016/j.ijpvp.2004.09.005
43.
Moffat
,
D. G.
,
Hsieh
,
M. F.
, and
Lynch
,
M.
,
2001
, “
An Assessment of ASME III and CEN TC54 Methods of Determining Plastic and Limit Loads for Pressure System Components
,”
J. Strain Anal. Eng. Des.
,
36
(
3
), pp.
301
312
.10.1243/0309324011514485
44.
EL-Bagory
,
T. M.
,
Younan
,
M. A.
,
Sallam
,
H. E. M.
, and
Abdel-Latif
,
L. A.
,
2010
, “
Limit Load of Pre-Cracked Polyethylene Miter Pipe Bends Subjected to In-Plane Bending Moment
,”
Under Publication (ASME Conference PVP 2010)
, Paper Number: PVP 2010-25397.
You do not currently have access to this content.