The high temperature low cycle fatigue behavior of P91 weld metal (WM) and weld joints (cross-weld) is presented. Strain-controlled tests have been carried out at 400 °C and 500 °C. The cyclic behavior of the weld material (WM) and cross-weld (CW) specimens are compared with previously published base material (BM) tests. The weld material is shown to give a significantly harder and stiffer stress–strain response than both the base material and the cross-weld material. The cross-weld tests exhibited a cyclic stress–strain response, which was similar to that of the base material. All specimen types exhibited cyclic softening but the degree of softening exhibited by the cross-weld specimens was lower than that of the base material and all-weld tests. Finite element models of the base metal, weld metal and cross-weld test specimens are developed and employed for identification of the cyclic viscoplasticity material parameters. Heat affected zone (HAZ) cracking was observed for the cross-weld tests.

References

References
1.
Hyde
,
T. H.
, and
Sun
,
W.
,
2005
, “
A Study of Anisotropic Creep Behaviour of a 9CrMoNbV Weld Metal Using Damage Analyses With a Unit Cell Model
,”
Proc. Inst. Mech. Eng., Part L
,
219
, pp.
193
206
.
2.
Spiarelli
,
S.
, and
Quadrini
,
E.
,
2002
, “
Analysis of the Creep Behaviour of Modified P91 Welds
,”
Mater. Des.
,
23
, pp.
547
552
.10.1016/S0261-3069(02)00026-2
3.
Tabuchi
,
M.
,
Hongo
,
H.
,
Li
,
Y.
,
Wantanabe
,
T.
, and
Takahashi
,
Y.
,
2009
, “
Evaluation of Microstructures and Creep Damages in the HAZ of P91steel Weldment
,”
ASME Int. J. Pressure Vessels Technology
,
131
(2), p.
021406
.10.1115/1.3028021
4.
Watanabe
,
T.
,
Tabuchi
,
M.
,
Yamazaki
,
M.
,
Hongo
,
H.
, and
Tanabe
,
T.
,
2006
, “
Creep Damage Evaluation of 9Cr–1Mo–V–Nb Steel Welded Joints Showing Type IV Fracture
,”
Int. J. Pressure Vessels Piping
,
83
, pp.
63
71
.10.1016/j.ijpvp.2005.09.004
5.
Kimura
,
K.
,
Tabuchi
,
M.
,
Takahashi
,
Y.
, and
Yagi
,
K.
,
2011
, “
Long-Term Creep Strength and Strength Reduction Factor for Welded Joints of ASME Grades 91, 92, and 122 Type Steels
,”
Int. J. Microstruct. Mater. Prop.
,
6
, pp.
72
90
.
6.
Gaffard
,
V.
,
Gourgues
,
A. F.
, and
Besson
,
J.
,
2005
, “
High Temperature Creep Flow and Damage Properties of 9Cr1MoNbV Steels: Base Metal and Weldment
,”
Nucl. Eng. Des.
,
235
, pp.
2547
1562
.10.1016/j.nucengdes.2005.07.001
7.
Li
,
Y.
,
Hongo
,
H.
,
Tabuchi
,
M.
,
Takahashi
,
Y.
, and
Monma
,
Y.
,
2009
, “
Evaluation of Creep Damage in Heat Affected Zone of Thick Welded Joint for Mod.9Cr-1Mo Steel
,”
Int. J. Pressure Vessels Piping
,
86
, pp.
585
592
.10.1016/j.ijpvp.2009.04.008
8.
Das
,
C. R.
,
Albert
,
S. K.
,
Bhaduri
A. K.
,
Srinivasan
G.
, and
Murty
,
B. S.
,
2008
, “
Effect of Prior Microstructure on Microstructure and Mechanical Properties of Modified 9Cr-1Mo Steel Weld Joints
,”
Mater. Sci. Eng., A
,
477
, pp.
185
192
.10.1016/j.msea.2007.05.017
9.
EBI
,
G.
, and
McEvily
,
A. J.
,
1984
, “
Effect of Processing on the High Temperature Low Cycle Fatigue Properties of Modified 9Cr-1Mo
,”
Fatigue Fract. Eng. Mater. Struct.
,
7
, pp.
299
314
.10.1111/j.1460-2695.1984.tb00198.x
10.
Gieseke
,
B. G.
,
Brinkman
,
C. R.
, and
Maziasz
,
P. J.
,
1993
, The Influence of Long Term Thermal Ageing on the Microstructure and Mechanical Properties of Modified 9Cr-1M0 Steel,
P. K.
Liaw
,
R.
Viswanathan
,
K. L.
Murty
,
E. P.
Simonen
, and
D.
Frear
, eds.,
The Minerals, Metals and Materials Society
, pp.
107
115
.
11.
Shankar
,
V.
,
Valsan
,
M.
,
Bhanu Sankara Rao
,
K.
,
Kannan
,
R.
,
Mannan
,
S. L.
, and
Pathak
,
S. D.
,
2006
, “
Low Cycle Fatigue Behaviour and Microstructural Evolution of Modified 9Cr-1Mo Ferritic Steel
,”
Mater. Sci Eng., A
,
437
(
2
), pp.
413
422
.10.1016/j.msea.2006.07.146
12.
Fournier
,
B.
,
Sauzay
,
M.
,
Caës
,
C.
,
Noblecourt
,
M.
, and
Mottot
,
M.
,
2006
, “
Analysis of Hysteresis of a Martensitic Steel, Part I: Study of the Influence of Strain Amplitude and Temperature Under Pure Fatigue Loadings Using Enhanced Stress Partitioning Method
,”
Mater. Sci Eng., A
,
437
, pp.
183
196
.10.1016/j.msea.2006.08.086
13.
Fournier
,
B.
,
Sauzay
,
M.
,
Caës
,
C.
,
Noblecourt
,
M.
,
Mottot
,
M.
, and
Pineau
,
A.
,
2006
, “
Analysis of Hysteresis of a Martensitic Steel, Part II: Study of the Influence of Creep and Stress Relaxation Holding Times on Cyclic Behaviour
,”
Mater. Sci. Eng., A
,
437
, pp.
197
211
.10.1016/j.msea.2006.08.087
14.
Yang
,
H. C.
,
Tu
,
Y.
,
Yu
,
M. M.
, and
Zhao
,
J.
,
2009
, “
Investigation of the Low-Cycle Fatigue and Fatigue Crack Growth Behaviours of P91 Base and Weld Joints
,”
Acta Metall. Sin. (Engl. Lett.)
,
17
(
4
), pp.
597
600
.
15.
Mannan
,
S. L.
, and
Valsan
,
M.
,
2006
, “
High-Temperature Low Cycle Fatigue, Creep-Fatigue, and Thermomechanical Fatigue of Steels and Their Welds
,”
Int. J. Mech. Sci.
,
48
, pp.
160
175
.10.1016/j.ijmecsci.2005.08.004
16.
Takahashi
,
Y
.,
2006
, “
Study on Type-IV Damage Prevention in High-Temperature Welded Structures of Next-Generation Reactor Plants, Part I: Fatigue and Creep-Fatigue Behaviour of Welded Joints of Modified 9Cr-1Mo Steel
,”
ASME PVP Conference
, Canada.
17.
Shankar
,
V.
,
Valsan
,
M.
,
Bhanu Sankara Rao
,
K.
, and
Pathak
,
S. D.
,
2010
, “
Low Cycle Fatigue and Creep-Fatigue Interaction Behaviour of Modified 9Cr-1Mo Ferritic Steel and Its Weld Joint
,”
Trans. Indian Inst. Met.
,
63
, pp.
622
628
.10.1007/s12666-010-0093-y
18.
Shankar
,
V.
,
Sandhya
,
R.
, and
Mathew
,
M. D.
,
2011
, “
Creep-Fatigue-Oxidation Interaction in Grade 91 Steel Weld Joints for High Temperature Applications
,”
Mater. Sci. Eng., A
,
528
, pp.
8428
8437
.10.1016/j.msea.2011.07.046
19.
Sandhya
,
R.
,
Kannan
,
R.
,
Ganesan
,
V.
,
Valsan
,
M.
, and
Bhanu Sankara Rao
,
K.
,
2010
, “
Low Cycle Fatigue Properties of Modified 9Cr-1Mo Ferritic Martensitic Steel Weld Joints in Sodium Environment
,”
Trans. Indian Inst. Met.
,
63
, pp.
553
557
.10.1007/s12666-010-0081-2
20.
Saad
,
A. A.
,
2012
, “
Cyclic Plasticity and Creep of Power Plant Materials
,” Ph.D. thesis, University of Nottingham, Nottingham, UK.
21.
Saad
,
A. A.
,
Hyde
,
C. J.
,
Sun
,
W.
, and
Hyde
,
T. H.
,
2011
, “
Thermal-Mechanical Fatigue Simulation of a P91 Steel in a Temperature Range of 400–600 °C
,”
Mater. High Temp.
,
28
(
3
), pp.
212
218
.10.3184/096034011X13072954674044
22.
Farragher
,
T. P.
,
Hyde
,
C. J.
,
Sun
,
W.
,
Hyde
,
T. H.
,
O'Dowd
,
N. P.
,
Scully
,
S.
, and
Leen
,
S. B.
,
2012
, “
High Temperature Low Cycle Fatigue Behaviour of Service-Aged P91 Material
,”
9th International Conference on Creep and Fatigue at Elevated Temperatures
, IOM3, London, UK.
23.
Hyde
,
C. J.
,
Sun
,
W.
,
Hyde
,
T. H.
,
Rouse
,
J. P.
,
Farragher
,
T. P.
, O'Dowd, N.P., and
Leen
,
S. B.
,
2012
, “
Cyclic Visco-Plasticity Testing and Modelling of a Service-Aged P91 Steel
,”
Proceedings of the ASME 2012, Pressure Vessels and Piping Division Conference
, ASME, July 15–19, 2012, Ontario, Canada, Report No. PVP2012-78460.
24.
Deshpande
,
A. A.
,
Hyde
,
T. H.
, and
Leen
,
S. B.
,
2010
, “
Experimental and Numerical Characterization of the Cyclic Thermo-Mechanical Behaviour of a High Temperature Forming Tool Alloy
,”
ASME J. Manuf. Sci. Eng.
,
132
(6), p.
051013
.10.1115/1.4003126
25.
Farragher
,
T. P.
,
Scully
,
S.
,
O'Dowd
,
N. P.
, and
Leen
,
S. B.
,
2012
, “
Thermomechanical Analysis of a Pressurised Pipe Under Plant Conditions
,”
ASME J. Pressure Vessel Technol.
,
135
(1), p. 011204.10.1115/1.4007287
26.
Farragher
,
T. P.
,
Scully
,
S.
,
O'Dowd
,
N. P.
, and
Leen
,
S. B.
,
2013
, “
Development of Life Assessment Procedures for Power Plant Headers Operated Under Flexible Loading Scenarios
,”
Int. J. Fatigue
,
49
, pp.
50
61
.10.1016/j.ijfatigue.2012.12.007
27.
Lemaitre
,
J.
, and
Chaboche
,
J. L.
,
1990
, Mechanics of Solid Materials,
Cambridge University, Cambridge
,
UK
.10.1017/CBO9781139167970
28.
Saad
,
A. A.
,
Sun
,
W.
,
Hyde
,
T. H.
, and
Tanner
,
D. W. J.
,
2011
, “
Cyclic Softening Behaviour of a P91 Steel Under Low Cycle Fatigue at High Temperature
,”
Proceedings from ICM11
, Eng. Procedia, Vol.
10
, pp.
1103
1108
.
29.
Fournier
,
B.
,
Sauzay
,
M.
,
Renault
,
A.
,
Barcelo
,
F.
, and
Pineau
,
A.
,
2009
, “
Microstructural Evolutions and Cyclic Softening of 9%Cr Martensitic Steels
,”
J. Nucl. Mater.
,
386
(
8
), pp.
71
77
.
You do not currently have access to this content.