The finite element (FE) implementation of a hyperbolic sine unified cyclic viscoplasticity model is presented. The hyperbolic sine flow rule facilitates the identification of strain-rate independent material parameters for high temperature applications. This is important for the thermo-mechanical fatigue of power plants where a significant stress range is experienced during operational cycles and at stress concentration features, such as welds and branched connections. The material model is successfully applied to the characterisation of the high temperature low cycle fatigue behavior of a service-aged P91 material, including isotropic (cyclic) softening and nonlinear kinematic hardening effects, across a range of temperatures and strain-rates.

References

References
1.
Swindeman
,
R. W.
,
Santella
,
M. L.
,
Maziasz
,
P. J.
,
Roberts
,
B. W.
, and
Coleman
,
K.
,
2004
, “
Issues in Replacing Cr–Mo Steels and Stainless Steels With 9Cr–1Mo–V Steel
,”
Int. J. Pressure Vessels Piping
,
81
, pp.
507
512
.10.1016/j.ijpvp.2003.12.009
2.
Sauzay
,
M.
,
Fournier
,
B.
,
Mottot
,
M.
,
Pineau
,
A.
, and
Monnet
,
I.
,
2008
, “
Cyclic Softening of Martensitic Steels at High Temperature—Experiments and Physically Based Modelling
,”
Mater. Sci. Eng., A
,
483–484
, pp.
410
414
.10.1016/j.msea.2006.12.183
3.
Sauzay
,
M.
,
Brillet
,
H.
,
Monnet
,
I.
,
Mottot
,
M.
,
Barcelo
,
F.
,
Fournier
,
B.
, and
Pineau
,
A.
,
2005
, “
Cyclically Induced Softening Due to Low-Angle Boundary Annihilation in a Martensitic Steel
,”
Mater. Sci. Eng., A
,
400–401
, pp.
241
244
.10.1016/j.msea.2005.02.092
4.
Fujio
,
A.
,
2008
, “
Precipitate Design for Creep Strengthening of 9% Cr Tempered Martensitic Steel for Ultra-Supercritical Power Plants
,”
Sci. Technol. Adv. Mater.
,
9
, p.
013002
.10.1088/1468-6996/9/1/013002
5.
Pantleon
,
W.
,
2001
, “
The Evolution of Disorientations for Several Types of Boundaries
,”
Mater. Sci. Eng., A
,
319–321
, pp.
211
215
.10.1016/S0921-5093(01)00947-
6.
Chaboche
,
J. L.
, and
Rousselier
,
G.
,
1983
, “
On the Plastic and Viscoplastic Constitutive Equations—Part I: Rules Developed With Internal Variable Concept
,”
ASME J. Pressure Vessel Technol.
,
105
, pp.
153
158
.10.1115/1.3264257
7.
Chaboche
,
J. L.
, and
Rousselier
,
G.
,
1983
, “
On the Plastic and Viscoplastic Constitutive Equations—Part II: Application of Internal Variable Concepts to the 316 Stainless Steel
,”
ASME J. Pressure Vessel Technol
,
105
, pp.
159
164
.10.1115/1.3264258
8.
Koo
,
G.-H.
, and
Kwon
,
J.-H.
,
2011
, “
Identification of Inelastic Material Parameters for Modified 9Cr–1Mo Steel Applicable to the Plastic and Viscoplastic Constitutive Equations
,”
Int. J. Pressure Vessels Piping
,
88
, pp.
26
33
.10.1016/j.ijpvp.2010.11.004
9.
Saad
,
A. A.
,
Hyde
,
C. J.
,
Sun
,
W.
, and
Hyde
,
T. H.
,
2011
, “
Thermal-Mechanical Fatigue Simulation of a P91 Steel in a Temperature Range of 400–600 °C
,”
Mater. High. Temp.
,
28
, pp.
212
218
.10.3184/096034011X13072954674044
10.
Farragher
,
T. P.
,
Scully
,
S.
,
O'Dowd
,
N. P.
, and
Leen
,
S. B.
,
2013
, “
Development of Life Assessment Procedures for Power Plant Headers Operated Under Flexible Loading Scenarios
,”
Int. J. Fatigue
,
49
, pp.
50
61
.10.1016/j.ijfatigue.2012.12.007
11.
Farragher
,
T. P.
,
Scully
,
S.
,
O'Dowd
,
N. P.
, and
Leen
,
S. B.
,
2013
, “
Thermomechanical Analysis of a Pressurized Pipe Under Plant Conditions
,”
ASME J. Pressure Vessel Technol
,
135
, p.
011204
.10.1115/1.4007287
12.
Barrett
,
R. A.
,
O'Donoghue
,
P. E.
, and
Leen
,
S. B.
,
2013
, “
An Improved Unified Viscoplastic Constitutive Model for Strain-Rate Sensitivity in High Temperature Fatigue
,”
Int. J. Fatigue
,
48
, pp.
192
204
.10.1016/j.ijfatigue.2012.11.001
13.
Barrett
,
R. A.
,
O'Donoghue
,
P. E.
, and
Leen
,
S. B.
,
2013
, “
Finite Element Modelling of the Thermo-Mechanical Behaviour of a 9Cr Martensitic Steel
,”
Advanced Materials Modelling for Structures
,
H.
Altenbach
and
S.
Kruch
, eds.,
Springer Berlin Heidelberg
,
Berlin, Germany
, pp.
31
41
.
14.
Perrin
,
I. J.
, and
Hayhurst
,
D. R.
,
1996
, “
Creep Constitutive Equations for a 0.5Cr–0.5Mo–0.25 V Ferritic Steel in the Temperature Range 600–675 °C
,”
J. Strain Anal. Eng. Des.
,
31
, pp.
299
314
.10.1243/03093247V314299
15.
Chaboche
,
J. L.
,
Gaubert
,
A.
,
Kanouté
,
P.
,
Longuet
,
A.
,
Azzouz
,
F.
, and
Mazière
,
M.
,
2013
, “
Viscoplastic Constitutive Equations of Combustion Chamber Materials Including Cyclic Hardening and Dynamic Strain Aging
,”
Int. J. Plast.
,
46
, pp.
1
22
.10.1016/j.ijplas.2012.09.011
16.
Vakili-Tahami
,
F.
,
Hayhurst
,
D. R.
, and
Wong
,
M. T.
,
2005
, “
High-Temperature Creep Rupture of Low Alloy Ferritic Steel Butt-Welded Pipes Subjected to Combined Internal Pressure and End Loadings
,”
Philos. Trans. R. Soc. London
,
363
, pp.
2629
2661
.10.1098/rsta.2005.1583
17.
Farragher
,
T. P.
,
Hyde
,
C. J.
,
Sun
,
W.
,
Hyde
,
T. H.
,
O'Dowd
,
N. P.
,
Scully
,
S.
, and
Leen
,
S. B.
,
2012
, “
High Temperature Low Cycle Fatigue Behaviour of Service-Aged P91 Material
,”
9th International Conference on Creep and Fatigue at Elevated Temperatures, IOM3
,
London, UK
.
18.
Hyde
,
C. J.
,
Sun
,
W.
,
Hyde
,
T. H.
,
Rouse
,
J. P.
,
Farragher
,
T. P.
,
O’Dowd
,
N. P.
, and
Leen
,
S. B.
,
2012
, “
Cyclic Visco-Plasticity Testing and Modelling of a Service-Aged P91 Steel
,”
Proceedings of the ASME 2012 Pressure Vessels and Piping Division Conference
, July 15–19, 2012, Vol. 6: Materials and Fabrications, Parts A and B, ASME,
Toronto, Ontario, Canada
.10.1115/PVP2012-78460
19.
Frederick
,
C. O.
, and
Armstrong
,
P. J.
,
2012
, “
A Mathematical Representation of the Multiaxial Bauschinger Effect
,”
Mater. High. Temp.
,
24
, pp.
1
26
.10.3184/096034007X207589
20.
Zhang
,
Z.
,
Delagnes
,
D.
, and
Bernhart
,
G.
,
2002
, “
Anisothermal Cyclic Plasticity Modelling of Martensitic Steels
,”
Int. J. Fatigue
,
24
, pp.
635
648
.10.1016/S0142-1123(01)00182-7
21.
Zhan
,
Z.
,
2004
, “
A Study of Creep-Fatigue Interaction in a New Nickel-Based Superalloy
,” Ph.D thesis, University of Portsmouth, Portsmouth, UK.
22.
Hyde
,
C. J.
,
Sun
,
W.
, and
Leen
,
S. B.
,
2010
, “
Cyclic Thermo-Mechanical Material Modelling and Testing of 316 Stainless Steel
,”
Int. J. Pressure Vessels Piping
,
87
, pp.
365
372
.10.1016/j.ijpvp.2010.03.007
23.
Stephens
,
R. I.
,
Fatemi
,
A.
,
Stephens
,
R. R.
, and
Fuchs
,
H. O.
,
2001
,
Metal Fatigue in Engineering
,
Wiley
,
New York
.
24.
Gong
,
Y. P.
,
Hyde
,
C. J.
,
Sun
,
W.
, and
Hyde
,
T. H.
,
2010
, “
Determination of Material Properties in the Chaboche Unified Viscoplasticity Model
,”
Proc. Inst. Mech. Eng., Part L
,
224
, pp.
19
29
.10.1243/09544062JMES1520
25.
Mahmoudi
,
A. H.
,
Pezeshki-Najafabadi
,
S. M.
, and
Badnava
,
H.
,
2011
, “
Parameter Determination of Chaboche Kinematic Hardening Model Using a Multi Objective Genetic Algorithm
,”
Comput. Mater. Sci.
,
50
, pp.
1114
1122
.10.1016/j.commatsci.2010.11.010
26.
Dunne
,
F. P. E.
, and
Petrinic
,
N.
,
2007
,
Introduction to Computational Plasticity
,
Oxford University Press
,
Oxford
, UK.
27.
Kloc
,
L.
,
Sklenicka
,
V.
,
Dlouhy
,
A.
, and
Kucharova
,
K.
,
1998
, “
Power-Law and Viscous Creep in Advanced 9%Cr Steel
,”
Microstructural Stability of Creep Resistant Alloys for High Temperature Plant Applications
,
A.
Strang
,
J.
Cawley
, and
G. W.
Greenwood
, eds.,
The Institute of Materials
,
London
, pp.
445
455
.
28.
Sklenička
,
V.
,
Kuchařová
,
K.
,
Svoboda
,
M.
,
Kloc
,
L.
,
Buršı
,
J.
, and
Kroupa
,
A.
,
2003
, “
Long-Term Creep Behavior of 9–12% Cr Power Plant Steels
,”
Mater. Charact.
,
51
, pp.
35
48
.10.1016/j.matchar.2003.09.012
You do not currently have access to this content.