Several methods were proposed in recent years that allow the efficient calculation of elastic and elastic-plastic shakedown limits. This paper establishes a uniform framework for such methods that are based on perfectly-plastic material behavior, and demonstrates the connection to Melan's theorem of elastic shakedown. The paper discusses implications for simplified methods of establishing shakedown, such as those used in the ASME Code. The framework allows a clearer assessment of the limitations of such simplified approaches. Application examples are given.

References

References
1.
The American Society of Mechanical Engineers
,
2007
, ASME Boiler and Pressure Vessel Code, Section III, Division 1, ASME, New York.
2.
The American Society of Mechanical Engineers
,
2007
, ASME Boiler and Pressure Vessel Code, Section VIII Division 2, ASME, New York.
3.
Melan
,
E.
,
1938
, “
Zur Plastizität des räumlichen Kontinuums
,”
Ing.-Arch.
,
9
, pp.
116
123
.10.1007/BF02084409
4.
Koiter
,
W. T.
,
1960
, “
General Theorems of Elastic-Plastic Solids
,”
Progress in Solid Mechanics
, Vol.
40
,
J. N.
Sneddon
and
R.
Hill
, eds., North Holland Publishing Co., Amsterdam, Netherlands, pp.
167
221
.
5.
Gokhfeld
,
D. A.
, and
Cherniavsky
,
O. F.
,
1980
,
Limit Analysis of Structures at Thermal Cycling
,
Suthoff & Nordhoff, Alphen aan den Rijn
,
The Netherlands
.
6.
Konig
,
J. A.
,
1987
,
Shakedown of Elastic-Plastic Structures
,
Elsevier
,
Amsterdam
, Netherlands.
7.
Mroz
,
Z.
,
Weichert
,
D.
, and
Dorosz
,
S.
, eds.,
1995
,
Inelastic Behavior of Structures Under Variable Loads
,
Kluwer Academic Publications, Dordrecht
,
Netherlands
.
8.
Weichert
,
D.
, and
Maier
,
G.
,
2000
,
Inelastic Behaviour of Structures Under Variable Loads: Theory and Engineering Applications
,
Kluwer Academic Publications, Dordrecht
,
Netherlands
.
9.
Bari
,
S.
, and
Hassan
,
T.
,
2001
, “
Constitutive Models With Formative Hardening and Non-Linear Kinematic Hardening for Simulation of Ratcheting
,” Transactions SMiRT 16, Washington, DC.
10.
Krabbenhøft
,
K.
,
Lyamin
,
A. V.
, and
Sloan
,
S. W.
,
2007
, “
Bounds to Shakedown Loads for a Class of Deviatoric Plasticity Models
,”
Comput. Mech.
,
39
, pp.
879
888
.10.1007/s00466-006-0076-3
11.
Ponter
,
A. R. S.
, and
Karadeniz
,
S.
,
1985
, “
An Extended Shakedown Theory for Structures that Suffer Cyclic Thermal Loading. Part I: Theory
,”
ASME J. Appl. Mech.
,
52
(4), pp.
877
882
.10.1115/1.3169162
12.
Ponter
,
A. R. S.
, and
Karadeniz
,
S.
,
1985
, “
An Extended Shakedown Theory for Structures that Suffer Cyclic Thermal Loading. Part II: Applications
,”
ASME J. Appl. Mech.
,
52
(4), pp.
883
889
.10.1115/1.3169163
13.
Bree
,
J.
,
1967
, “
Elastic-Plastic Behaviour of Thin Tubes Subjected to Internal Pressure and Intermittent High Heat Fluxes With Application to Fast Nuclear Reactor Fuel Elements
,”
J. Strain Anal.
,
2
, pp.
226
238
.10.1243/03093247V023226
14.
Mulcahy
,
T. M.
,
1976
, “
Thermal Ratchetting of a Beam Element Having an Idealized Bauschinger Effect
,”
ASME J. Eng. Mater. Technol.
,
98
(3), pp.
264
271
.10.1115/1.3443377
15.
Megahed
,
M. M.
,
1981
, “
Influence of Hardening Rule on the Elasto-Plastic Behaviour of a Simple Structure Under Cyclic Loading
,”
Int. J. Mech. Sci.
,
23
, pp.
169
182
.10.1016/0020-7403(81)90028-X
16.
Abdalla
,
H. F.
,
Megahed
,
M. M.
, and
Younan
,
M. Y. A.
,
2007
, “
A Simplified Technique for Shakedown Limit Load Determination
,”
Nucl. Eng. Des.
,
237
, pp.
1231
1240
.10.1016/j.nucengdes.2006.09.033
17.
Adibi-Asl
,
R.
, and
Reinhardt
,
W.
,
2010
, “
Ratchet Boundary Determination Using a Non-Cyclic Method
,”
ASME J. Pressure Vessel Technol.
,
132
(2), p.
021201
.10.1115/1.4000506
18.
Martin
,
M.
, and
Rice
,
D.
,
2009
, “
A Hybrid Procedure for Ratchet Boundary Predication
,”
ASME 2009 Pressure Vessels and Piping Conference
, Volume 1: Codes and Standards Prague, Czech Republic, July 26–30, 2009, Paper # PVP2009-77474, Prague, Czech Republic, pp.
81
88
.10.1115/PVP2009-77474
19.
Gelineau
,
O.
,
Sperandio
,
M.
, and
Berton
,
M. N.
,
2009
, “
Ratcheting Predictive Methods in RCC-MR Code
,”
ASME 2009 Pressure Vessels and Piping Conference
, Volume 1: Codes and Standards Prague, Czech Republic, July 26–30, 2009, Paper# PVP2009-77766, Prague, Czech Republic, pp.
89
94
.10.1115/PVP2009-77766
20.
Adibi-Asl
,
R.
, and
Reinhardt
,
W.
,
2012
, “
Non-Cyclic Shakedown/Ratcheting Boundary Determination-Part 2: Numerical Implementation
,”
Int. J. Pressure Vessels Piping
,
88
, pp.
321
329
.10.1016/j.ijpvp.2011.06.007
21.
Zeman
,
J. L.
,
2002
, “
The European Approach to Design by Analysis
,”
ASME PVP Conference Vancouver
, Canada.
22.
Chen
,
H. F.
, and
Ponter
,
A. R. S.
,
2001
, “
Shakedown and Limit Analyses for 3-D Structures Using the Linear Matching Method
,”
Int. J. Pressure Vessels Piping
,
78
, pp.
443
451
.10.1016/S0308-0161(01)00052-7
23.
Chen
,
H. F.
,
and Ponter
,
A. R. S.
,
2001
, “
A Method for the Evaluation of a Ratchet Limit and the Amplitude of Plastic Strain for Bodies Subjected to Cyclic Loading
,”
Eur. J. Mech. A/Solids
,
20
(
4
), pp.
555
571
.
24.
Clement
,
D.
,
Lebey
,
J.
, and
Roche
,
R. L.
,
1986
, “
Design Rule for Thermal Ratchetting
,”
ASME J. Pressure Vessel Technol.
,
106
, pp.
188
196
.10.1115/1.3264768
25.
Adibi-Asl
,
R.
, and
Reinhardt
,
W.
,
2012
, “
Non-Cyclic Shakedown/Ratcheting Boundary Determination-Part 1: Analytical Approach
,”
Int. J. Pressure Vessels Piping
,
88
, pp.
311
320
.10.1016/j.ijpvp.2011.06.006
26.
Moreton
,
D. N.
,
1993
, “
Ratchetting of a Cylinder Subjected to Internal Pressure and Alternating Axial Deformation
,”
J. Strain Anal. Eng. Des.
,
28
(
4
), pp.
277
282
.10.1243/03093247V284277
27.
Reinhardt
,
W.
,
2003
, “
Distinguishing Ratcheting and Shakedown Conditions in Pressure Vessels
,”
ASME Pressure Vessel and Piping Conference
, July 20–24, 2003, Cleveland, OH, PVP-Vol.
458
, pp.
13
26
.
28.
Reinhardt
,
W.
,
2007
, “
Elastic-Plastic Shakedown Assessment of Piping Using a Non-Cyclic Method
,” PVP2007-26703, July 22–26, San Antonio, TX.
You do not currently have access to this content.