Pipe bends are regions of geometric discontinuities in the pipe systems used in power plants and most industry recorded failures have been located around similar regions. Understanding these potential locations of weakness is therefore of great interest for the safe and economic operation of piping components. Increased predictive accuracy would assist in component design, condition monitoring, and retirement strategy decisions. Modeling of piping components for finite element analysis (FEA) is complicated by the variation of the cross section dimensions (changes in wall thicknesses or cross section ovality) around the pipe bend due to the manufacturing procedure implemented. Quantities such as peak rupture stress and creep rupture life can be greatly affected by these geometric variation (Rouse, J. P., Leom, M. Z., Sun, W., Hyde, T. H., Morris, A., “Steady-state Creep Peak Rupture Stresses in 90 Pipe Bends with Manufacture Induced Cross Section Dimension Variations”International Journal of Pressure Vessels and Piping, Volumes 105–106, May–June 2013, pp. 1–11). Three dimensional (3D) models can be used to approximate to the realistic level of detail found in pipe bends. These simulations may however be computationally expensive and could take a considerable amount of time to complete. Two dimensional (2D) axisymmetric models are relatively straight forward to produce and quick to run, but of course cannot represent the full geometric complexity around the pipe bend. A method is proposed that utilises multiple 2D axisymmetric pipe bend models to approximate the result of a 3D analysis through interpolation, thus exploiting the greatly reduced computing time observed for the 2D models. The prediction of peak rupture stress (both magnitude and location) is assessed using a simple power law material model. Comments are made on the applicability of the proposed procedure to a range of bends angles (90 deg, 60 deg, and 30 deg), as well as the effect of the stress exponent (n) and tri-axial (α) material constants. Provided that peak stresses do not occur at the bend/straight interface, the magnitude and location of the peak rupture stress can be predicted by the 2D axisymmetric interpolation method with a typical percentage difference of less than 1%.

References

References
1.
Rouse
,
J. P.
,
Leom
,
M. Z.
,
Sun
,
W.
,
Hyde
,
T. H.
, and
Morris
,
A.
,
2013
, “
Steady-State Creep Peak Rupture Stresses in 90 Pipe Bends With Manufacture Induced Cross Section Dimension Variations
,”
Int. J. Pressure Vessels Piping
,
105–106
, pp.
1
11
.10.1016/j.ijpvp.2013.02.002
2.
Ainsworth
,
R. A.
,
2006
, “
R5 Procedures for Assessing Structural Integrity of Components Under Creep and Creep-Fatigue Conditions
,”
Int. Mater. Rev.
,
51
(
2
), pp.
107
126
.10.1179/174328006X79463
3.
Ainsworth
,
R. A.
,
Budden
,
P. J.
, and
Hales
,
R.
,
1996
, “
Assessment of the High-Temperature Response of Structures: Developments in the R5 Procedure
,”
Sixth International Conference on Creep and Fatigue
, Vol.
2
, pp.
385
397
.
4.
Ainsworth
,
R. A.
, and
Hooton
,
D. G.
,
2008
, “
R6 and R5 Procedures: The Way Forward
,”
Int. J. Pressure Vessels Piping
,
85
(
3
), pp.
175
182
.10.1016/j.ijpvp.2007.10.003
5.
Induction Pipe Bending Uk Ltd
,
2008
, http://www.inductionbending.co.uk
6.
Kale
,
A. V.
, and
Thorat
,
H. T.
,
2008
, “
Effect of Precompression on Ovality of Pipe after Bending
,”
ASME J. Pressure Vessel Technol.
,
131
(
1
), p.
011207
.10.1115/1.3027464
7.
Veerappan
,
A. R.
, and
Shanmugam
,
S.
,
2006
, “
Stress Analysis of Pipe Bends Subjected to Internal Fluid Pressure Using the Finite Element Technique
,”
J. Strain Anal. Eng. Des.
,
41
(
8
), pp.
561
573
.10.1243/03093247JSA213
8.
Robertson
,
A.
,
Li
,
H. J.
, and
Mackenzie
,
D.
,
2005
, “
Plastic Collapse of Pipe Bends Under Combined Internal Pressure and in-Plane Bending
,”
Int. J. Pressure Vessels Piping
,
82
(
5
), pp.
407
416
.10.1016/j.ijpvp.2004.09.005
9.
Chattopadhyay
,
J.
,
Kushwaha
,
H. S.
, and
Roos
,
E.
,
2009
, “
Improved Integrity Assessment Equations of Pipe Bends
,”
Int. J. Pressure Vessels Piping
,
86
(
7
), pp.
454
473
.10.1016/j.ijpvp.2008.12.005
10.
Gyekenyesi
,
A. L.
,
Kautz
,
H. E.
, and
Shannon
,
R. E.
,
2002
, “
Quantifying Creep Damage in a Metallic Alloy Using Acousto-Ultrasonics
,”
J. Mater. Eng. Perform.
,
11
(
2
), pp.
205
210
.10.1361/105994902770344277
11.
Govindaraju
,
M. R.
,
Kaminski
,
D. A.
,
Devine
,
M. K.
,
Biner
,
S. B.
, and
Jiles
,
D. C.
,
1997
, “
Nondestructive Evaluation of Creep Damage in Power-Plant Steam Generators and Piping by Magnetic Measurements
,”
NDT & E Int.
,
30
(
1
), pp.
11
17
.10.1016/S0963-8695(96)00042-4
12.
Maharaj
,
C.
,
Dear
,
J. P.
, and
Morris
,
A.
,
2009
, “
A Review of Methods to Estimate Creep Damage in Low-Alloy Steel Power Station Steam Pipes
,”
Strain
,
45
(
4
), pp.
316
331
.10.1111/j.1475-1305.2008.00465.x
13.
British Standards Institution
,
2002
.
14.
British Standards Institution
,
1993
.
15.
Carmichael
,
G. D. T.
,
1986
, “
An Assessment of Primary System Stresses on the Creep-Behavior of High-Temperature Steam Piping Systems
,”
Proc. Inst. Mech. Eng., Part A
,
200
(
3
), pp.
197
204
.10.1243/PIME_PROC_1986_200_027_02
16.
Dieter
,
G. E.
,
1986
,
Mechanical Metallurgy, Mcgraw-Hill Series in Materials Science and Engineering
,
McGraw-Hill
,
New York
.
17.
Bailey
,
R. W.
,
1935
, “
The Utilization of Creep Test Data in Engineering Design
,”
Proc. Inst. Mech. Eng.
,
131
(
1
), pp.
131
349
.10.1243/PIME_PROC_1935_131_012_02
18.
Vakili-Tahami
,
F.
,
Hayhurst
,
D. R.
, and
Wong
,
M. T.
,
2005
, “
High-Temperature Creep Rupture of Low Alloy Ferritic Steel Butt-Welded Pipes Subjected to Combined Internal Pressure and End Loadings
,”
Philos. Trans. R. Soc. London, Ser. A
,
363
(
1836
), pp.
2629
2661
.10.1098/rsta.2005.1583
19.
Norton
,
F. H.
,
1929
,
The Creep of Steel at High Temperatures
,
McGraw-Hill book company, Inc.
,
New York
.
20.
Odqvist
,
F. K. G.
,
1974
,
Mathematical Theory of Creep and Creep Rupture, Oxford Mathematical Monographs
,
Clarendon
,
Oxford, UK
.
21.
Kachanov
,
L. M.
,
1967
,
The Theory of Creep
,
National Lending Library for Science & Technology
,
Boston Spa, Yorkshire, UK
.
22.
Backhaus
,
G.
,
1971
, “
Yu. N. Rabotnov, Creep Problems in Structural Members. (North-Holland Series in Applied Mathematics and Mechanics.) Ix + 822 S. M. 255 Fig. Amsterdam/London 1969. North-Holland Publishing Company. Preis Geb. Hfl. 120
,”
Zeitschrift fur Angewandte Mathematik und Mechanik
,
51
(
7
), pp.
575
576
.
23.
Leckie
,
F. A.
, and
Hayhurst
,
D. R.
,
1974
, “
Creep-Rupture of Structures
,”
Proc. R. Soc. London, Ser. A
,
340
(
1622
), pp.
323
347
.10.1098/rspa.1974.0155
24.
Hyde
,
T. H.
,
Yaghi
,
A.
, and
Proctor
,
M.
,
1998
, “
Use of the Reference Stress Method in Estimating the Life of Pipe Bends Under Creep Conditions
,”
Int. J. Pressure Vessels Piping
,
75
(
2
), pp.
161
169
.10.1016/S0308-0161(98)00033-7
25.
Hyde
,
T. H.
,
Sun
,
W.
, and
Williams
,
J. A.
,
2002
, “
Life Estimation of Pressurised Pipe Bends Using Steady-State Creep Reference Rupture Stresses
,”
Int. J. Pressure Vessels Piping
,
79
(
12
), pp.
799
805
.10.1016/S0308-0161(02)00134-5
26.
Sun
,
W.
,
Hyde
,
T. H.
,
Becker
,
A. A.
, and
Williams
,
J. A.
,
2002
, “
Steady-State Creep Reference Rupture Stresses for Internally Pressurised Pipes for Use in Life Prediction
,”
Int. J. Pressure Vessels Piping
,
79
(
2
), pp.
135
143
.10.1016/S0308-0161(01)00133-8
27.
Yaghi
,
A. H.
,
Hyde
,
T. H.
,
Becker
,
A. A.
, and
Sun
,
W.
,
2009
, “
Parametric Peak Stress Functions of 90 Degress Pipe Bends With Ovality Under Steady-State Creep Conditions
,”
Int. J. Pressure Vessels Piping
,
86
(
10
), pp.
684
692
.10.1016/j.ijpvp.2009.03.004
28.
Kochekseraii
,
S. B.
,
2004
, “
Finite Element Modelling of Plastic Collapse of Metallic Single Mitred Pipe Bends Subject to in-Plane Bending Moments
,”
Int. J. Pressure Vessels Piping
,
81
(
1
), pp.
75
81
.10.1016/j.ijpvp.2003.11.014
29.
Weber
,
J.
,
Klenk
,
A.
, and
Rieke
,
A.
,
2005
, “
A New Method of Strength Calculation and Lifetime Prediction of Pipe Bends Operating in the Creep Range
,”
Int. J. Pressure Vessels Piping
,
82
(
2
), pp.
77
84
.10.1016/j.ijpvp.2004.07.019
30.
Dassault Syste'mes
, “
Abaqus 6.10: Analysis User's Manual
,”
2010
.
31.
Kim
,
Y. J.
,
Je
,
J. H.
,
Oh
,
C. S.
,
Han
,
J. J.
, and
Budden
,
P. J.
,
2010
, “
Plastic Loads for 90 Degrees Thick-Walled Elbows under Combined Pressure and Bending
,”
J. Strain Anal. Eng. Des.
,
45
(
2
), pp.
115
127
.10.1243/03093247JSA568
32.
Weiss
,
E.
,
Lietzmann
,
A.
, and
Rudolph
,
J.
,
1996
, “
Linear and Nonlinear Finite-Element Analyses of Pipe Bends
,”
Int. J. Pressure Vessels Piping
,
67
(
2
), pp.
211
217
.10.1016/0308-0161(95)00019-4
33.
Hyde
,
T. H.
,
Becker
,
A. A.
,
Sun
,
W.
, and
Williams
,
J. A.
,
2005
, “
Influence of Geometry Change on Creep Failure Life of 90 Degrees Pressurised Pipe Bends with No Initial Ovality
,”
Int. J. Pressure Vessels Piping
,
82
(
7
), pp.
509
516
.10.1016/j.ijpvp.2005.01.003
34.
Veerappan
,
A. R.
, and
Shanmugam
,
S.
,
2006
, “Stress Analysis of Pipe Bends Subjected to Internal Fluid Pressure Using the Finite Element Technique,”
J. Strain Anal. Eng. Des.
,
41
, pp. 561–573.10.1243/03093247JSA213
35.
Hyde
,
T. H.
,
Sabesan
,
R.
, and
Leen
,
S. B.
,
2004
, “
Approximate Prediction Methods for Notch Stresses and Strains under Elastic-Plastic and Creep Conditions
,”
J. Strain Anal. Eng. Des.
,
39
(
5
), pp.
515
527
.10.1243/0309324041896461
36.
Calladine
,
C. R.
,
1963
, “
A Rapid Method for Estimating the Greatest Stress in a Structure Subject to Creep
,”
Proc. Inst. Mech. Eng.
,
178
(
12
), pp.
198
206
.
37.
Harlow
,
D. G.
, and
Delph
,
T. J.
,
2000
, “
Creep Deformation and Failure: Effects of Randomness and Scatter
,”
ASME J. Eng. Mater. Technol.
,
122
(
3
), pp.
342
347
.10.1115/1.482807
You do not currently have access to this content.