Pressure vessels can greatly protect a water supply pipeline system from water hammer damages. In order to improve the performance of a pressure vessel, a strainer is proposed to compensate the resistance of the connecting pipe. A numerical model and program is established for a pressure vessel with an independent compensation strainer based on the method of characteristics (MOC). Using the proposed model, the hydraulic transient processes are simulated for a pressure vessel with various strainer resistances, and the hydraulic pressure and volume fluctuations are obtained by the proposed model. The influences of resistance on the transient process are analyzed and an optimal approach is suggested to determine the suitable compensation strainer for the pressure vessel. A water hammer protection system is optimized based on the proposed method. The result shows that the compensation strainer can largely affect both positive and negative water hammer pressure. If a suitable strainer is selected based on the proposed approach, the transient surge and extreme pressure distribution will decrease. To some degree, it is simple and convenient to improve a pressure vessel by employing an additional compensation strainer in the pipeline system for water hammer protection.

References

References
1.
Gray
,
C. A. M.
,
1953
, “
The Analysis of the Dissipation of Energy in Water Hammer
,”
Proc. ASCE
,
119
, pp.
1176
1194
.
2.
Wylie
,
E. B.
, and
Streeter
V. L.
,
1978
,
Fluid Transients
,
McGraw-Hill Int. Book Co.
,
New York
.
3.
Izquierdo
,
J.
, and
Iglesias
,
P. L.
,
2004
, “
Mathematical Modelling of Hydraulic Transients in Complex Systems
,”
Math. Comput. Modell.
,
39
(
4
), pp.
529
540
.10.1016/S0895-7177(04)90524-9
4.
Schmitt
,
C.
,
Pluvinage
,
G.
,
Hadj-Taieb
,
E.
, and
Akid
,
R.
,
2006
, “
Water Pipeline Failure Due to Water Hammer Effects
,”
Fatigue. Fract. Eng. Mater. Struct.
,
29
(
12
), pp.
1075
1082
.10.1111/j.1460-2695.2006.01071.x
5.
Afshar
,
M. H.
,
Rohani
,
M.
, and
Taheri
,
R.
,
2010
, “
Simulation of Transient Flow in Pipeline Systems Due to Load Rejection and Load Acceptance by Hydroelectric Power Plants
,”
Int. J. Mech. Sci.
,
52
(
1
), pp.
103
115
.10.1016/j.ijmecsci.2009.10.014
6.
Elansary
,
A. S.
,
2000
, “
Waterhammer Protection for the Toshka Pumping System
,”
Joint Conference on Water Resource Engineering and Water Resources Planning and Management 2000: Building Partnerships
, ASCE, Minneapolis, pp.
1
10
.
7.
Suda
,
M.
,
1991
, “
Simulation of Valve Closure After Pump Failure in Pipeline
,”
ASCE J. Hydraul. Eng.
,
117
(
3
), pp.
392
396
.10.1061/(ASCE)0733-9429(1991)117:3(392)
8.
Tian
,
W.
,
Su
,
G. H.
,
Wang
,
G.
,
Qiu
,
S.
, and
Xiao
,
Z.
,
2008
, “
Numerical Simulation and Optimization on Valve-Induced Water Hammer Characteristics for Parallel Pump Feedwater System
,”
Ann. Nucl. Energy
,
35
(
12
), pp.
2280
2287
.10.1016/j.anucene.2008.08.012
9.
Bosserman
,
B. E.
,
1978
, “
Computer Analysis of Hydraulic Transients in a Complex Piping System
,”
J. Am. Water Works Assoc.
,
70
(
7
), pp.
371
376
.
10.
Zhou
,
Z. X.
, and
Keat
,
T. S.
,
2003
, “
Theoretical, Numerical and Experimental Study of Water Hammer in Pipe System With Column Surge Chamber
,”
J. Hydrodyn.
,
15
(
5
), pp.
20
28
.
11.
El-Kholy
,
M. E.
,
Yassin
,
A. E. A.
,
El-Razek
,
M. A.
, and
Mostafa
,
E. A.
,
2006
, “
Analysis of Water Hammer in Irrigation Pipelines Networks Due to Pump Power Failure
,”
AEJ Alexandria Eng. J.
,
45
(
4
), pp.
489
497
.
12.
Kwon
,
H. J.
, and
Lee
,
J. J.
,
2008
, “
Computer and Experimental Models of Transient Flow in a Pipe Involving Backflow Preventers
,”
ASCE J. Hydraul. Eng.
,
134
(
4
), pp.
426
434
.10.1061/(ASCE)0733-9429(2008)134:4(426)
13.
Han
,
S. Y.
,
Hansen
,
D.
, and
Kember
,
G.
,
2011
, “
Multiple Scales Analysis of Water Hammer Attenuation
,”
Q. Appl. Math.
,
69
(
4
), pp.
677
690
.10.1090/S0033-569X-2011-01258-9
14.
Bazargan-Lari
,
M. R.
,
Kerachian
,
R.
,
Afshar
,
H.
, and
Bashi-Azghadi
,
S. N.
,
2013
, “
Developing an Optimal Valve Closing Rule Curve for Real-Time Pressure Control in Pipes
,”
J. Mech. Sci. Technol.
,
27
(
1
), pp.
215
225
.10.1007/s12206-012-1208-7
15.
Eskin
,
D.
,
2013
, “
An Engineering Analysis of Transient Laminar Flows in Long Microchannels
,”
Can. J. Chem. Eng.
,
91
(
3
), pp.
524
531
.10.1002/cjce.21661
16.
Ruus
,
E.
,
1977
, “
Charts for Water Hammer in Pipelines With Air Chambers
,”
Can. J. Civ. Eng.
,
4
(
3
), pp.
293
313
.10.1139/l77-040
17.
Syed
,
J. L.
, and
Wu
,
Z. Y.
,
2012
, “
Transient Effects of Surge Vessel Sizes and Locations in a Water Transmission Line
,”
World Environmental and Water Resources Congress 2012: Crossing Boundaries
,
ASCE
,
Albuquerque
, pp.
3033
3043
.
18.
Zaki
,
K. O.
, and
Elansary
,
A. S.
,
2011
, “
Optimal Design of Air Vessel for Water Hammer Protection in Water Distribution Network
,”
J. Eng. Appl. Sci.
,
58
(
3
), pp.
219
236
.
19.
Saito
,
S.
,
Takahashi
,
M.
, and
Nagata
,
Y.
,
2011
, “
Effects of the Air Volume in the Air Chamber on the Performance of Water Hammer Pump System
,”
Int. J. Fluid Mach. Syst.
,
4
(
2
), pp.
39
45
.10.5293/IJFMS.2011.4.2.255
20.
Di Santo
,
A. R.
,
Fratino
,
U.
,
Iacobellis
,
V.
, and
Piccinni
,
A. F.
,
2002
, “
Effects of Free Outflow in Rising Mains With Air Chamber
,”
ASCE J. Hydraul. Eng.
,
128
(
11
), pp.
992
1001
.10.1061/(ASCE)0733-9429(2002)128:11(992)
21.
Stephenson
,
D.
,
2002
, “
Simple Guide for Design of Air Vessels for Water Hammer Protection of Pumping Lines
,”
ASCE J. Hydraul. Eng.
,
128
(
8
), pp.
792
797
.10.1061/(ASCE)0733-9429(2002)128:8(792)
22.
De Martino
,
G.
, and
Fontana
,
N.
,
2012
, “
Simplified Approach for the Optimal Sizing of Throttled Air Chambers
,”
ASCE J. Hydraul. Eng.
,
138
(
12
). pp.
1101
1109
.10.1061/(ASCE)HY.1943-7900.0000633
23.
Izquierdo
,
J.
,
Lopez
,
P. A.
,
Lopez
,
G.
,
Martinez
,
F. J.
, and
Perez
,
R.
,
2006
, “
Encapsulation of Air Vessel Design in a Neural Network
,”
Appl. Math. Model.
,
30
(
5
), pp.
395
405
.10.1016/j.apm.2005.11.010
24.
Purcell
,
P. J.
,
1997
, “
Case Study of Check–Valve Slam in Rising Main Protected by Air Vessel
,”
ASCE J. Hydraul. Eng.
,
123
(
12
), pp.
1166
1168
.10.1061/(ASCE)0733-9429(1997)123:12(1166)
25.
Lee
,
T. S.
,
2000
, “
Effects of Air Entrainment on the Ability of Air Vessels in the Pressure Surge Suppressions
,”
ASME J. Fluids Eng.
,
122
(
3
), pp.
499
504
.10.1115/1.1286992
26.
Wan
,
W.
, and
Huang
,
W.
2013
, “
Investigation of Fluid Transients in Centrifugal Pump Integrated System With Multichannel Pressure Vessel
,”
ASME J. Pressure Vessel Technol.
,
135
(
6
), p.
061301
.10.1115/1.4024457
You do not currently have access to this content.