Determination of shakedown (SD) boundaries of 90-degree plain smooth pipe bends has recently received substantial attention by several researchers. However, scarce or almost no solid information is found within the literature regarding the determination of the shakedown boundary of cracked pipe bends. The current research presents two additions to the literature, namely, determination of shakedown boundary for a circumferentially cracked 90-degree pipe bend via a simplified technique utilizing the finite element (FE) method and introduction of failure-assessment diagrams (FADs) in compliance with the API 579 failure-for-service assessment of pressure vessel and piping components. The analyzed cracked pipe bend is subjected to the combined effect of steady internal pressure spectrum and cyclic in-plane closing (IPC) and opening (IPO) bending moments. Line spring elements (LSEs) are embedded in quadratic shell elements to model part-through cracks. FAD is obtained through linking the J-integral fracture mechanics parameter with the shakedown limit moments of the analyzed cracked 90-degree pipe bend. The LSE outcomes illustrated satisfactory results in comparison to the results of two verification studies: stress intensity factor (SIF) and limit load. Additionally, full elastic-plastic (ELPL) cyclic loading finite element analyses are conducted and the outcomes revealed very good correlation with the results obtained via the simplified technique. The maximum load carrying capacity (limit moment) and the elastic domain are also computed thereby generating a Bree diagram for the cracked pipe bend. Finally, Crack growth analysis is presented to complement the FAD.

References

References
1.
Melan
,
E.
,
1936
, “
Theorie Statisch Unbestimmter Systeme Aus Ideal Plastischean Baustoff
,”
Sitzungsber. Akad. Wiss. Wien, IIa
,
145
, pp.
195
218
.
2.
Yahiaoui
,
K.
,
Moffat
,
D. G.
, and
Moreton
,
D. N.
,
2000
, “
Piping Elbows With Cracks Part 1: A Parametric Study of the Influence of Crack Size on Limit Loads Due to Pressure and Opening Bending
,”
J. Strain Anal.
,
35
, pp.
35
46
.10.1243/0309324001513991
3.
Yahiaoui
,
K.
,
Moffat
,
D. G.
, and
Moreton
,
D. N.
,
2000
, “
Piping Elbows With Cracks Part 2: Global Finite Element and Experimental Plastic Loads Under Opening Bending
,”
J. Strain Anal.
,
35
, pp.
47
57
.10.1243/0309324001514008
4.
Yahiaoui
,
K.
,
Moffat
,
D. G.
, and
Moreton
,
D. N.
,
2000
, “
Local Finite Element and Experimental Limit Loads of Cracked Piping Elbows Under Opening Bending
,”
J. Strain Anal.
,
36
, pp.
175
186
.10.1111/j.1475-1305.2000.tb01202.x
5.
Yahiaoui
,
K.
,
Moffat
,
D. G.
, and
Moreton
,
D. N.
,
2002
, “
Evaluation of Limit Load Data for Cracked Pipes Under Opening Bending and Comparison With Existing Solutions
,”
J. Pressure Vessels Piping
,
79
, pp.
27
36
.10.1016/S0308-0161(01)00131-4
6.
Fitness-For-Service, API 579-1/ASME FFS-1, June 5, 2007 (API 579 2nd ed.), American Petroleum Institute and American Society for Mechanical Engineers.
7.
Marriott
,
D. L.
,
1988
, “
Evaluation of Deformation or Load Control of Stress Under Inelastic Conditions Using Finite Elements Stress Analysis
,”
ASME Transactions, PVP Division Conference
, Vol.
136
, pp.
3
9
.
8.
Dhalla
,
A. K.
,
1987
, “
A Simplified Procedure to Classify Stresses for Elevated Temperature Service
,”
ASME Transactions, PVP Division Conference
, Vol.
120
, pp.
177
188
.
9.
Seshadri
,
R.
,
1991
, “
The Generalized Local Stress Strain (GLOSS) Analysis-Theory and Applications
,”
ASME J. Pressure Vessel Technol.
,
113
(2), p.
219227
.10.1115/1.2928749
10.
Ponter
,
A.
, and
Boulbibane
,
M.
,
2002
, “
Minimum Theorems and the Linear Matching Method for Bodies in a Cyclic State of Creep
,”
Eur. J. Mech. A/Solids
,
21
, pp.
915
925
.10.1016/S0997-7538(02)01245-7
11.
Mackenzie
,
D.
, and
Boyle
,
J. T.
,
1993
, “
A Simple Method for Estimating Shakedown Load for Complex Structures
,”
ASME J. Pressure Vessel Technol.
,
265
, pp.
89
94
.
12.
Mackenzie
,
D.
,
Boyle
,
J. T.
, and
Hamilton
,
R.
,
1999
, “
The Elastic Compensation Method for Limit and Shakedown Analysis: A Review
,”
J. Strain Anal.
,
35
, pp.
171
188
.10.1243/0309324001514332
13.
ASME Boiler and Pressure Vessel Code
,
2004
, Section VIII Division 2, NG-3000.
14.
Muscat
,
M.
, and
Mackenzie
,
D.
,
2003
, “
Elastic Shakedown Analysis of Axisymmetric Nozzles
,”
ASME J. Pressure Vessel Technol.
,
125
(4), pp.
365
370
.10.1115/1.1613301
15.
Abdalla
,
H. F.
,
Megahed
,
M. M.
, and
Younan
,
M. Y. A.
,
2006
, “
Determination of Shakedown Limit Load for a 90 Degree Pipe Bend Using a Simplified Technique
,”
ASME J. Pressure Vessel Technol.
,
128
(4), pp.
618
624
.10.1115/1.2349575
16.
Abdalla
,
H. F.
,
Megahed
,
M. M.
, and
Younan
,
M. Y. A.
,
2007
, “
Shakedown Limits of a 90-Degree Pipe Bend Using Small and Large Displacement Formulations
,”
ASME J. Pressure Vessel Technol.
,
129
(2), pp.
287
295
.10.1115/1.2716433
17.
Abdalla
,
H. F.
,
Megahed
,
M. M.
, and
Younan
,
M. Y. A.
,
2007
, “
A Simplified Technique for Shakedown Limit Load Determination
,”
Nucl. Eng. Des.
,
237
, pp.
1231
1240
.10.1016/j.nucengdes.2006.09.033
18.
Abdalla
,
H. F.
,
Megahed
,
M. M.
, and
Younan
,
M. Y. A.
,
2011
, “
A Simplified Technique for Shakedown Limit Load Determination of a Large Square Plate With a Small Central Hole Under Cyclic Biaxial Loading
,”
Nucl. Eng. Des.
,
241
, pp.
657
665
.10.1016/j.nucengdes.2010.11.019
19.
Abdalla
,
H. F.
,
Younan
,
M. Y. A.
, and
Megahed
,
M. M.
,
2011
, “
Shakedown Limit Loads For 90-Degree Scheduled Pipe Bends Subjected to Constant Internal Pressure and Cyclic Bending Moments
,”
ASME J. Pressure Vessel Technol.
,
133
(3), p.
031207
.10.1115/1.4002055
20.
Abdalla
,
H. F.
,
Younan
,
M. Y. A.
, and
Megahed
,
M. M.
,
2007
, “
Shakedown Limit Load Determination for a Kinematically Hardening 90-Degree Pipe Bend Subjected to Constant Internal Pressure and Cyclic Bending
,”
ASME Transactions, PVP Division Conference
,
San Antonio, TX
.
21.
Abdalla
,
H. F.
,
Megahed
,
M. M.
, and
Younan
,
M. Y. A.
,
2009
, “
Comparison of Pipe Bend Ratchetting/Shakedown Test Results With the Shakedown Boundary Determined via a Simplified Technique
,”
ASME Transactions, PVP Division Conference
,
Prague, Czech Republic
.
22.
Abdalla
,
H. F.
,
Megahed
M. M.
, and
Younan
,
M. Y. A.
,
2011
, “
Determination of Shakedown Limit Loads for a Cylindrical Vessel–Nozzle Intersection via a Simplified Technique
,”
ASME Transactions, PVP Division Conference
,
Maryland, USA
.
23.
Feng
,
X. Q.
, and
Gross
,
D.
,
1999
, “
A Global/Local Shakedown Analysis Method of Elastoplastic Cracked Structures
,”
Eng. Fract. Mech., pp.
179
192
.10.1016/S0013-7944(99)00028-4
24.
Mingde
,
X.
,
Xianfeng
,
W.
, and
Bingye
,
X.
,
1996
, “
Lower-Bound Shakedown Analysis of Spherical Shells Containing Defects
,”
Int. J. Pressure Vessels Piping
,
68
, pp.
877
889
.10.1016/0308-0161(95)00067-4
25.
Yinghua
,
L.
,
Carvelli
,
V.
, and
Maier
,
G.
,
1998
, “
Limit and Shakedown Analysis of Pressurized Pipelines Containing Defects
,”
Chin. Soc. Theor. Appl. Mech.
,
14
, pp.
65
75
.10.1007/BF02486831
26.
Miller
,
A. G.
,
1988
, “
Review of Limit Loads of Structures Containing Defects
,”
Int. J. Pressure Vessels Piping
,
32
, pp.
197
327
.10.1016/0308-0161(88)90073-7
27.
Zahoor
,
A.
,
1989–1991
,
Ductile Fracture Handbook
, Vol.
1–3
,
Electric Power Research Institute
,
Palo Alto, CA
, EPRI NP-6301-D/N14.
28.
Chattopadhyay
,
J.
,
Dutta
,
B. K.
, and
Kushwaha
,
H. S.
,
Roos
,
E.
, and
Herter
,
K.-H.
,
2004
, “
Load Bearing Capacity of Flawed Piping Components-Comparison of Experiment With Calculation
,”
Int. J. Pressure Vessels Piping
,
81
, pp.
599
608
.10.1016/j.ijpvp.2004.04.007
29.
Chattopadhyay
,
J.
,
Tomar
,
A. K. S.
,
Dutta
,
B. K.
, and
Kushwaha
,
H. S.
,
2003
, “
Collapse Moment of Elbows With Through Wall Circumferentially Crack Subjected to In-Plane Bending Moment
,”
29th MPA Seminar, MPA
,
Stuttgart
, Oct. 9–10.
30.
Milne
,
I.
,
Ainsworth
,
R. A.
,
Dowling
,
A. R.
, and
Stewart
,
A. T.
,
1986
, “
Assessment of the Integrity of Structures Containing Defects
,”
Int. J. Pressure Vessels Piping
,
32
, pp.
3
104
.10.1016/0308-0161(88)90071-3
31.
Rice
,
J. R.
, and
Levy
,
N.
,
1972
, “
The Part-Through Surface Crack in an Elastic-Plastic Plate
,”
ASME J. Appl. Mech.
,
39
, pp.
185
194
.10.1115/1.3422609
32.
Rice
,
J. R.
, and
Levy
,
N.
,
1972
, “
The Line-Spring Model for Surface Flaws
,”
The Surface Crack: Physical Problems and Computational Solutions
,
J. L.
Swedlow
, ed.,
American Society of Mechanical Engineers
.
33.
Parks
,
D. M.
,
1981
, “
The Inelastic Line-Spring: Estimates of Elastic Plastic Fracture Mechanics Parameters for SurfaceCracked Plates and Shells
,”
ASME J. Pressure Vessel Technol.
,
103
, pp.
246
254
.10.1115/1.3263398
34.
Parks
,
D. M.
,
1981
, “
Inelastic Analysis of Surface Flaws Using the Line-Spring Model
,”
Advances in Fracture
, Vol.
5
,
D.
Francois
, ed., pp.
2589
2598
.
35.
Sauter
,
A.
,
Turan
,
K.
,
Kerkhof
,
K.
, and
Wagemann
,
G.
,
1989
, “
Fracture Mechanics Analysis of a Pipe Elbow
,”
Nucl. Eng. Des.
,
122
, pp.
211
222
.10.1016/0029-5493(89)90158-1
36.
SIMULIA—Dassault Systèmes
,
2009
, ABAQUS/Standard, Version 6.9-1, “User Documentation Manuals.”
37.
Raju
,
I. S.
, and
Newman
,
J. R.
,
1979
, “
Stress-Intensity Factors for a Wide Range of Semi-Elliptical Surface Cracks in Finite-Thickness Plates
,”
Eng. Fract. Mech.
,
11
, pp.
817
829
.10.1016/0013-7944(79)90139-5
You do not currently have access to this content.