Two stress relaxation constitutive models have been developed to predict the stress relaxation behavior for high-temperature bolting according to continuum damage mechanics, Kachanov–Robatnov (K–R), and Othman–Hayhurst (O–H) creep constitutive equations as well as stress relaxation strain equations. To validate the effectiveness of constitutive equations, the predicted results were compared with the experimental data of uniaxial isothermal stress relaxation tests using 1Cr10NiMoW2VNbN steel. The results show that the results obtained by the stress relaxation constitutive model based on the K–R creep equation overestimates the stress relaxation behavior, while the model deduced by the O–H creep equation is more in agreement with the experimental data. Moreover, the stress relaxation damage predicted increases with the increment of initial stress significantly. These indicate that the new models can predict the stress relaxation behavior of high-temperature bolting well.

References

References
1.
Woodford
,
D. A.
,
1993
, “
Test Methods for Accelerated Development, Design and Life Assessment of High-Temperature Materials
,”
Mater. Des.
,
14
(
4
), pp.
231
241
.10.1016/0261-3069(93)90077-9
2.
Bose
,
S. C.
,
Singh
,
K.
, and
Swaminathan
,
J.
,
2004
, “
Prediction of Creep Life of X10CrMoVNbN-91 (P-91) Steel Through Short Term Stress Relaxation Test Methodology
,”
J. Mater. Sci. Technol.
,
20
(
10
), pp.
1290
1296
.10.1179/026708304225022304
3.
Yamashita
,
M.
, and
Wada
,
Y.
,
1989
, “
The Stress Relaxation Behavior of SUS 304 Stainless Steel
,” Collection and Uses for Relaxation Data in Design, ASME, pp.
15
19
.
4.
Aoto
,
K.
,
Koakutsu
,
T.
,
Wada
,
Y.
, and
Hirano
,
M.
,
1986
, “
The Prediction of the Stress Relaxation Behavior of the High-Temperature Structural Materials by Creep-Strain Equations
,”
International Conference on Creep
,
Tokyo
, pp.
495
500
.
5.
Kitade
,
S.
,
Setoguchi
,
K.
, and
Yamauchi
,
M.
,
1989
, “
Cyclic Stress-Strain Behavior of Modified 9Cr-1Mo Steel Under Creep-Fatigue Interaction
,” Collection and Uses for Relaxation Data in Design, ASME, pp.
35
41
.
6.
Ellis
,
F. V.
, and
Sebastian
,
T.
,
2000
, “
Calculation of Stress Relaxation Properties for Type 422 Stainless Steel
,”
ASME J. Pressure Vessel Technol.
,
122
(
2
), pp.
66
71
.10.1115/1.556152
7.
Othman
,
A. M.
, and
Hayhurst
,
D. R.
,
1990
, “
Multi-Axial Creep Rupture of a Model Structure Using a Two Parameter Material Model
,”
Int. J. Mech. Sci.
,
32
(
1
), pp.
35
48
.10.1016/0020-7403(90)90150-H
8.
Evans
,
R. W.
, and
Wilshire
,
B.
,
1985
,
Creep of Metals and Alloys
,
The Institute of Metals
,
London, UK
.
9.
Rao
,
G.
,
Gupta
,
O. P.
, and
Pradhan
,
B.
,
2005
, “
A New Predictive Method of Stress Relaxation Behavior for High Temperature Structural Materials
,”
ECCC Creep Conference
,
London, UK
, pp.
1023
1031
.
10.
Yang
,
Y. K.
,
Wu
,
T. L.
, and
Jiang
,
X. M.
,
1986
, “
High Temperature Strength and Experiments of Metals
,”
Science and Technology Press
,
Shanghai, China
, pp.
189
190
.
11.
Vierreck
,
D.
,
1987
, “
Stress Relaxation Behavior of Cobalt Base Superalloy CoNi23Cr22W4
,”
J. Acta Metal.
,
35
(
9
), pp.
607
612
.
12.
Chang
,
Y. J.
,
1999
, “
Activation Process of Stress Relaxation During Hold Time in 1Cr-Mo-V Steel
,”
J. Mater. Sci. Eng.
,
A264
, pp.
188
197
.
13.
Liu
,
Y.
,
2003
,
Stress Relaxation Behavior and Mechanisms of TC4 Alloy
,
Harbin Institute of Technology
, Heilongjiang, China.
14.
Viswanathan
,
R.
,
1993
, “
Damage Mechanisms and Life Assessment of High Temperature Components
,”
ASM International
,
Ohio
, pp.
283
284
.
15.
Hirota
,
Y.
,
1982
, “
Changes of Material Properties and Life Management of Steam Turbine Components Under Long Term Service
,”
J. Mitsubshi Tech. Rev.
,
19
(
3
), pp.
27
36
.
16.
Guo
,
L. F.
,
Liu
,
Q. F.
, and
Ou
,
Y. J.
,
2005
, “
Analyze on Life Wasting and Safety Performance for High Temperature Bolts of Cylinder Joint
,”
J. Therm. Power Gener.
,
34
(
10
), pp.
71, 76–77
.
17.
Kachanov
,
L. M.
,
1958
, “
USSUR Division Engineering Science
,” Izv Akad Nauk, SSR, Otd Tekhn, pp.
26
30
. (in Russian).
18.
Dyson
,
B.
,
2000
, “
Use of CDM in Materials Modeling and Component Creep Life Prediction
,”
ASME J. Pressure Vessel Technol.
,
122
(
8
), pp.
281
296
.10.1115/1.556185
19.
Movaghghar
,
A.
, and
Lvov
,
G. I.
,
2012
, “
A Method of Estimating Wind Turbine Blade Fatigue Life and Damage Using Continuum Damage Mechanics
,”
Int. J. Damage Mech.
,
21
(
6
), pp.
810
821
.10.1177/1056789511419693
20.
Jing
,
J. P.
,
Meng
,
G.
, and
Sun
,
Y.
,
2003
, “
An Effective Continuum Damage Mechanics Model for Creep-Fatigue Life Assessment of a Steam Turbine Rotor
,”
Int. J. Pressure Vessels Piping
,
80
, pp.
389
396
.10.1016/S0308-0161(03)00070-X
21.
Yang
,
J.
,
Hsiao
,
J. S.
,
Fong
,
M.
, and
Gibbons
,
T. B.
,
2004
, “
The Application of Physically Based CDM Modeling in Prediction of Materials Properties and Component Lifetime
,”
ASME J. Pressure Vessel Technol.
,
126
(
8
), pp.
369
375
.10.1115/1.1767178
22.
Guo
,
J. Q.
,
Xuan
,
F. Z.
, and
He
,
L.
,
2008
, “
Stress Relaxation Performance and Prediction Models for Bolt Material of 1Cr10NiMoW2VNbN
,”
J. Nucl. Power Eng.
,
29
(
6
), pp.
119
124
.
23.
Bolton
,
J.
,
1995
,
Design Considerations for High-Temperature Bolting: Performance of Bolting Materials in High Temperature Plant Applications
,
The Institute of Materials
,
London, UK
, pp.
1
14
.
You do not currently have access to this content.