Alloy 617 is the leading candidate material for an intermediate heat exchanger (IHX) application of the very high temperature nuclear reactor (VHTR), expected to have an outlet temperature as high as 950 °C. Acceptance of Alloy 617 in Section III of the ASME Code for nuclear construction requires a detailed understanding of the creep-fatigue behavior. Initial creep-fatigue work on Alloy 617 suggests a more dominant role of environment with increasing temperature and/or hold times evidenced through changes in creep-fatigue crack growth mechanisms and failure life. Continuous cycle fatigue and creep-fatigue testing of Alloy 617 was conducted at 950 °C and 0.3% and 0.6% total strain in air to simulate damage modes expected in a VHTR application. Continuous cycle fatigue specimens exhibited transgranular cracking. Intergranular cracking was observed in the creep-fatigue specimens and the addition of a hold time at peak tensile strain degraded the cycle life. This suggests that creep-fatigue interaction occurs and that the environment may be partially responsible for accelerating failure.

References

References
1.
Rao
,
K. B. S.
,
Schiffers
,
H.
,
Schuster
,
H.
, and
Nickel
,
H.
,
1988
, “
Creep-Fatigue Interaction of Inconel 617 at 950 °C in Simulated Nuclear Reactor Helium
,”
Metall. Trans. A
,
19A
, pp.
359
371
.
2.
Breitling
,
H.
,
Dietz
,
W.
, and
Penkalla
,
H. J.
,
1988
, “
Evaluation of Mechanical Properties of the Alloy NiCr22Co12Mo (Alloy 617) for Heat Exchanging Components of HTGRs
,” IWGGCR, High Temperature Metallic Materials for Gas Cooled Reactors, Cracow, Poland.
3.
Meurer
,
H. P.
,
Gnirss
,
G. K. H.
,
Mergler
,
W.
,
Raule
,
G.
,
Schuster
,
H.
, and
Ullrich
,
G.
,
1984
, “
Investigations on the Fatigue Behavior of High-Temperature Alloys for High-Temperature Gas-Cooled Reactor Components
,”
Nucl. Technol.
,
66
, pp.
315
323
.
4.
Nagato
,
K.
,
Murakami
,
T.
, and
Hashimoto
,
T.
,
1989
, “
High Temperature Low-Cycle Fatigue Strength of Hastelloy-XR
,” IWGGCR, High Temperature Metallic Materials for Gas Cooled Reactors, Cracow, Poland.
5.
Tsuji
,
H.
, and
Nakajima
,
H.
,
1989
, “
Fatigue Properties of Nickel-Base High Temperature Alloys for HTGRs
,” IWGGCR, High Temperature Metallic Materials for Gas Cooled Reactors, Cracow, Poland.
6.
Strizak
,
J. P.
,
Cbrinkman
,
C. R.
, and
Rittenhouse
,
P. L.
,
1981
, “
High Temperature Low-Cycle Fatigue and Tensile Properties of Hastelloy X and Alloy 617 in Air and HTGR-Helium
,” Specialists' Meeting on High Temperature Metallic Materials for Application in Gas Cooled Reactors, T1–T15.
7.
ASTM
,
2004
, “
Standard Practice for Strain-Controlled Fatigue Testing
,” ASTM Standard E606-04E1.
8.
Totemeier
,
T.
, and
Tian
,
H.
,
2007
, “
Creep-Fatigue-Environment Interactions in INCONEL 617
,”
Mater. Sci. Eng. A
,
468–470
, pp.
81
87
.10.1016/j.msea.2006.10.170
9.
Carroll
,
L. J.
,
Cabet
,
C.
,
Madland
,
R.
, and
Wright
,
R. N.
, “
Creep and Environmental Effects on the High Temperature Creep-Fatigue Behavior of Alloy 617
,”
J. ASTM Int.
,
8
(
6
), p.
103797
.10.1520/JAI103797
10.
Hales
,
R.
,
1980
, “
A Quantitative Metallographic Assessment of Structural Degradation of Type 316 Stainless Steel During Creep-Fatigue
,”
Fatigue Fract. Eng. Mater. Struct.
,
3
(
4
), pp.
339
356
.10.1111/j.1460-2695.1980.tb01383.x
11.
Wood
,
D. S.
,
Wynn
,
J.
,
Baldwin
,
A. B.
, and
O'riordan
,
P.
,
1980
, “
Some Creep/Fatigue Properties of Type 316 Steel at 625 °C
,”
Fatigue Fract. Eng. Mater. Struct.
,
3
, pp.
39
57
.10.1111/j.1460-2695.1980.tb01103.x
12.
Rodriguez
,
P.
, and
Rao
,
K. B. S.
,
1993
, “
Nucleation and Growth of Cracks and Cavities Under Creep-Fatigue Interaction
,”
Prog. Mater. Sci.
,
37
, pp.
403
480
.10.1016/0079-6425(93)90006-7
13.
Plumbridge
,
W. J.
, and
Ellison
,
E. G.
,
1987
, “
Low-Cycle-Fatigue Behaviour of Superalloy Blade Materials at Elevated Temperature
,”
Mater. Sci. Technol.
,
3
, pp.
706
714
.10.1179/026708387790329829
14.
Nagesha
,
A.
,
Valsan
,
M.
,
Rao
,
K. B. S.
, and
Mannan
,
S. L.
,
2000
, “
Hold Time Effects on the Low Cycle Fatigue Behaviour of a Nimonic PE-16 Superalloy
,”
Trans. Indian Inst. Met.
,
53
(
3
), pp.
283
290
.
15.
Lillo
,
T.
,
Cole
,
J.
,
Frary
,
M.
, and
Schlegel
,
S.
,
2009
, “
Influence of Grain Boundary Character on Creep Void Formation in Alloy 617
,”
Metall. Mater. Trans. A
,
40A
(
12
), pp.
2803
2811
.10.1007/s11661-009-0051-7
You do not currently have access to this content.