A pressure vessel is installed to prevent transient vacuum and overpressure in centrifugal pump integrated system. In order to study the transient response of the pressure vessel with multichannels and improve design approach, an integrated system with two centrifugal pumps and a pressure vessel is presented. Based on the water hammer method of characteristics (MOC), the integrated numerical model and program are established by combining pumps, valves and pressure vessels in the integrated systems. Transient pressure process and gas volume variation are simulated for the pressure vessel. The Oscillation amplitude and frequency are obtained, and then the extreme hydraulic transient pressures are analyzed and compared. An optimal design method is provided to determine the safe and economic mass (SEM) of gas (nitrogen) and corresponding optimal safe and economic volume (SEV) of pressure vessel.

References

References
1.
Wood
,
D. J.
,
2005
, “
Waterhammer Analysis-Essential and Easy (and Efficient)
,”
ASCE J. Environ. Eng.
,
131
(
8
), pp.
1123
1131
.10.1061/(ASCE)0733-9372(2005)131:8(1123)
2.
Wylie
,
E. B.
, and
Streeter
,
V. L.
,
1978
,
Fluid Transients
,
McGraw-Hill Int. Book Co.
,
New York
.
3.
Chaudhry
,
H. M.
,
1987
,
Applied Hydraulic Transients
,
Van Nostrand Reinhold
,
New York
.
4.
Izquierdo
,
J.
, and
Iglesias
,
P. L.
,
2002
, “
Mathematical modelling of Hydraulic Transients in Simple Systems
,”
Math. Comput. Modell.
,
35
(
7-8
), pp.
801
812
.10.1016/S0895-7177(02)00051-1
5.
Sui-ju
,
L.
, and
Feng
,
Q.
,
2012
, “
Numerical Simulation of the Water Hammer Caused by Accidental Pump-Stop in Long Water Supply Systems
,”
Third International Conference on Mechanic Automation and Control Engineering
,
2012
, pp.
2575
2577
.10.1109/MACE.2012.659
6.
Afshar
,
M. H.
, and
Rohani
,
M.
,
2008
, “
Water Hammer Simulation by Implicit Method of Characteristic
,”
Int. J. Pressure Vessels Piping
,
85
(
12
), pp.
851
859
.10.1016/j.ijpvp.2008.08.006
7.
Duan
,
H. F.
,
Tung
,
Y. K.
, and
Ghidaoui
,
M. S.
,
2010
, “
Probabilistic Analysis of Transient Design for Water Supply Systems
,”
ASCE J. Water Resour. Plann. Manage.
,
136
(
6
), pp.
678
687
.10.1061/(ASCE)WR.1943-5452.0000074
8.
Kim
,
S. H.
,
2008
, “
Impulse Response Method for Pipeline Systems Equipped With Water Hammer Protection Devices
,”
ASCE J. Hydraul. Eng.
,
134
(
7
), pp.
961
969
.10.1061/(ASCE)0733-9429(2008)134:7(961)
9.
Kim
,
S. H.
,
2010
, “
Design of Surge Tank for Water Supply Systems Using the Impulse Response Method With the GA Algorithm
,”
J. Mech. Sci. Technol.
,
24
(
2
), pp.
629
636
.10.1007/s12206-010-0108-y
10.
Kung
,
C. S.
, and
Yang
,
X. L.
,
1993
, “
Energy Interpretation of Hydraulic Transients in Power-Plant With Surge Tank
,”
J. Hydraul. Res.
,
31
(
6
), pp.
825
840
.10.1080/00221689309498821
11.
Stephenson
,
D.
,
1997
, “
Effects of Air Valves and Pipework on Water Hammer Pressures
,”
ASCE J. Transp. Eng.
,
123
(
2
), pp.
101
106
.10.1061/(ASCE)0733-947X(1997)123:2(101)
12.
Zhang
,
K. Q.
,
Karney
,
B. W.
, and
Mcpherson
,
D. L.
,
2008
, “
Pressure-Relief Valve Selection and Transient Pressure Control
,”
J. Am. Water Works Assoc.
,
100
(
8
), pp.
62
69
.
13.
Di
Santo
,
A. R.
,
Fratino
,
U.
,
Iacobellis
,
V.
, and
Piccinni
,
A. F.
,
2002
, “
Effects of Free Outflow in Rising Mains With Air Chamber
,”
ASCE J. Hydraul. Eng.
,
128
(
11
), pp.
992
1001
.10.1061/(ASCE)0733-9429(2002)128:11(992)
14.
Elliot
,
R. C.
,
Liou
,
J. C. P.
, and
Peterson
,
R. C.
,
2006
, “
Sizing and Design of an Air Chamber-Transient Modeling Results and Field Test Comparisons
,”
Annual Water Distribution Systems Analysis Symposium. ASCE, Cincinnati
, pp.
1
18
.
15.
Saito
,
S.
,
Takahashi
,
M.
, and
Nagata
,
Y.
,
2011
, “
Effects of the Air Volume in the Air Chamber on the Performance of Water Hammer Pump System
,”
Int. J. Fluid Mach. Syst.
,
4
(
2
), pp.
39
45
.
16.
Nitescu
,
C. S.
,
Constantin
,
A.
, and
Stanescu
,
M.
,
2011
, “
Hydraulic Study on Pumping Stations Equipped With Air Chamber
,”
Recent Research in Computer Technology, Proceedings of Non-Linear Systems and Control
, pp.
228
231
.
17.
Stephenson
,
D.
,
2002
, “
Simple Guide for Design of Air Vessels for Water Hammer Protection of Pumping Lines
,”
ASCE J. Hydraul. Eng.
,
128
(
8
), pp.
792
797
.10.1061/(ASCE)0733-9429(2002)128:8(792)
18.
Izquierdo
,
J.
,
Lopez
,
P. A.
,
Lopez
,
G.
,
Martinez
,
F. J.
, and
Perez
,
R.
,
2006
, “
Encapsulation of Air Vessel Design in a Neural Network
,”
Appl. Math. Model.
,
30
(
5
), pp.
395
405
.10.1016/j.apm.2005.11.010
19.
Rohani
,
M.
, and
Afshar
,
M. H.
,
2010
, “
Simulation of Transient Flow Caused by Pump Failure: Point-Implicit Method of Characteristics
,”
Ann. Nucl. Energy
,
37
(
12
) pp.
1742
1750
.10.1016/j.anucene.2010.07.004
20.
Lee
,
T. S.
,
1998
, “
A Numerical Method for the Computation of the Effects of an Air Vessel on the Pressure Surges in Pumping Systems With Air Entrainment
,”
Int. J. Numer. Methods Fluids
,
28
(
4
), pp.
703
718
.10.1002/(SICI)1097-0363(19980930)28:4<703::AID-FLD741>3.0.CO;2-8
21.
Wan
,
W.
,
Zhu
,
S.
, and
Hu
,
Y.
,
2010
, “
Attenuation Analysis of Hydraulic Transients With Laminar-Turbulent Flow Alternations
,”
Appl. Math. Mech. Engl. Ed.
,
31
(
10
), pp.
1209
1216
.10.1007/s10483-010-1354-9
22.
Streeter
,
V. L.
,
Wylie
,
E. B.
, and
Bedford
,
W.
,
1997
,
Fluid Mechanics
,
9th ed.
,
McGraw-Hill
,
New York
.
23.
Marchal
,
M.
,
Flesh
,
G.
, and
Suter
,
P.
,
1965
, “
The Calculation of Water-Hammer Problems by Means of the Digital Computer
,”
Proceedings of International Symposium on Water hammer Pumped Storage Projects, ASME
,
Chicago
.
24.
Wan
,
W.
, and
Huang
,
W.
,
2011
, “
Investigation on Complete Characteristics and Hydraulic Transient of Centrifugal Pump
,”
J. Mech. Sci. Technol.
,
25
(
10
), pp.
2583
2590
.10.1007/s12206-011-0729-9
You do not currently have access to this content.