A numerical approach to an infinite sequence of collinear cracks is presented in this paper. Numerical examples are included to illustrate the accuracy of the numerical approach. Specifically, an infinite sequence of collinear cracks subjected to concentrated loads is analyzed using the numerical approach. Many numerical results of the stress intensity factors (SIFs) are given. In addition, an experiential formula to calculate the SIFs of the infinite sequence of collinear cracks is presented. Numerical examples show that the experiential formula has very high accuracy.

References

References
1.
Wang
,
G. S.
, and
Feng
,
X. T.
,
2001
, “
The Interaction of Multiple Rows of Periodical Cracks
,”
Int. J. Fract.
,
110
, pp.
73
100
.10.1023/A:1010824317724
2.
Koiter
,
W. T.
,
1959
, “
An Infiniter Row of Collinear Cracks in an Infinite Elastic Sheet
,”
Ing. -Arch.
28
, pp.
168
170
.10.1007/BF00536108
3.
Isida
,
M.
,
Ushijima
,
N.
, and
Kishine
,
N.
,
1981
, “
Rectangular Plates, Strips and Wide Plates Containing Internal Crack Under Various Boundary Conditions
,”
Trans. Jpn. Soc. Mech. Eng.
,
47
, pp.
27
35
.10.1299/kikaia.47.27
4.
Galybin
,
A. N.
,
1998
, “
Stress Intensity Factors for Two Periodical Rows of Collinear Cracks
,”
Eng. Fract. Mech.
,
3
, pp.
281
288
.10.1016/S0013-7944(97)00132-X
5.
Wang
,
G. S.
,
1992
, “
Interaction of Multiple Cracks
,” Ph.D. dissertation, Institute of Rock and Soil Mechanics, Chinese Academy of Science, Wuhan, China.
6.
Wang
,
G. S.
, and
Yuan
,
J. X.
,
1995
, “
Weakening of an Elastic Plate by a Doubly-Periodic Array of Cracks
,”
Acta Mech. Solida Sinica
,
Supplementary Issue
, pp.
37
50
.
7.
Horii
,
H.
, and
Nemat-Nasser
,
S.
,
1985
, “
Elastic Fields of Interacting in Homogeneities
,”
Int. J. Solids Struct.
,
21
, pp.
731
745
.10.1016/0020-7683(85)90076-9
8.
Hu
,
K. X.
,
Chandra
,
A.
, and
Huang
,
Y.
,
1993
, “
Multiple Void-Crack Interaction
,”
Int. J. Solids Struct.
,
30
, pp.
1473
1489
.10.1016/0020-7683(93)90072-F
9.
Nemet-Nasser
,
S.
,
Yu
,
N.
, and
Horii
,
M.
,
1993
, “
Solids With Periodically Distributed Cracks
,”
Int. J. Solids Struct.
,
30
, pp.
2071
2095
.10.1016/0020-7683(93)90052-9
10.
Suzdalnisky
,
J. D.
,
1998
, “
Numerical Estimates of the Stress Intensity Factors for Periodic Crack Systems in Threedimensional Medium
,”
Int. J. Solids Struct.
,
35
, pp.
1743
1750
.10.1016/S0020-7683(97)00133-9
11.
Deng
,
H.
, and
Nemat-Nasser
,
S.
,
1992
, “
Microcrack Arrays in Isotropic Solids
,”
Mech. Mater.
,
13
, pp.
15
36
.10.1016/0167-6636(92)90033-A
12.
Bleuth
,
J. L.
, and
Hutchinson
,
J. W.
,
1994
, “
Fracture Analysis of Multi-Site Cracking in Fuselage Lap Joints
,”
Comput. Mech.
,
13
, pp.
315
331
.10.1007/BF00512586
13.
Hausler
,
C.
,
Gao
,
C. F.
, and
Balke
,
H.
,
2004
, “
Collinear and Periodic Electrode-Ceramic Interfacial Cracks in Piezoelectric Bimaterials
,”
Trans. ASME J. Appl. Mech.
,
71
, pp.
486
492
.10.1115/1.1767168
14.
Ouinas
,
D.
,
2012
, “
Strength of Aluminum Single-Lap Bonded Joints in Various Disbond Size at Circular and Semi-Circular Notches
,”
J. Sandwich Struct. Mater.
,
14
(
6
), pp.
753
768
.10.1177/1099636212460039
15.
Hu
,
Y. T.
, and
Zhao
,
X. H.
,
1996
, “
Collinear Periodic Cracks in an Anisotropic Medium
,”
Int. J. Fract.
,
76
, pp.
207
219
.10.1007/BF00048287
16.
Chen
,
Y., Z.
,
Lin
,
X. Y.
, and
Wang
,
Z. X.
,
2005
, “
Solution of Periodic Group Crack Problems Using the Fredholm Integral Equation Approach
,”
Acta Mech.
,
178
, pp.
41
51
.10.1007/s00707-005-0233-3
17.
Wang
,
Z. Q.
,
Wang
,
X. F.
, and
Feng
,
S. F.
,
1983
, “
Fracture Principles in the Presplitting Blasting
,”
Explos. Shock Waves
,
3
(
1
), pp.
52
58
.
18.
Lu
,
W. B.
,
Chen
,
M.
,
Geng
,
X.
,
Shu
,
D.
, and
Zhou
,
C.
, “
A Study of Excavation Sequence and Contour Blasting Method for Underground Powerhouses of Hydropower Stations
,”
Tunnel. Underground Space Technol.
,
29
, pp.
31
39
.10.1016/j.tust.2011.12.008
19.
Crouch
,
S. L.
, and
Starfied
,
A. M.
,
1983
,
Boundary Element Method in Solid Mechanics, With Application in Rock Mechanics and Geological Mechanics
,
Geore Allon & Unwin
,
London, Bonton, Sydney
.
20.
Yan
,
X.
,
2005
, “
An Efficient and Accurate Numerical Method of SIFs Calculation of a Branched Crack
,”
ASME J. Appl. Mech.
,
72
(
3
), pp.
330
340
.10.1115/1.1796449
21.
Murakami
,
Y.
,
1987
,
Stress Intensity Factors Handbook
,
Pergamon Press
,
New York
.
You do not currently have access to this content.