In this paper, the mα-tangent multiplier is used in conjunction with the elastic modulus adjustment procedure (EMAP) for limit load determination. This technique is applied to a number of mechanical components possessing different kinematic redundancies. By specifying spatial variations in the elastic modulus, numerous sets of statically admissible and kinematically admissible stress and strain distributions are generated, and limit loads for practical components are then determined using the mα-tangent method. The procedure ensures sufficiently accurate limit loads within a reasonable number of iterations. Results are compared with the inelastic finite element results and are found to be in satisfactory agreement.
Issue Section:
Design and Analysis
References
1.
Borrvall
, T.
, 2009
, “A Heuristic Attempt to Reduce Transverse Shear Locking in Fully Integrated Hexahedra With Poor Aspect Ratio
,” 7th European LS-DYNA Conference
, May 14–15.2.
Xia
, K.
, and Zhang Kenn
, K. Q.
, 2009
, “A Multiscale Finite Element Formulation for Axisymmetric Elastoplasticity With Volumetric Locking
,” Int. J. Numer. Anal. Methods Geomech.
, 34
, pp. 1076
–1100
.3.
Jones
, G. L.
, and Dhalla
, A. K.
, 1981
, “Classification of Clamp Induced Stresses in Thin Walled Pipe
,” Int. J. Pressure Vessels Piping
, 81
, pp. 17
–23
.4.
Seshadri
, R.
, and Fernando
, C. P. D.
, 1992
, “Limit Loads of Mechanical Components and Structures Using the GLOSS R-Node Method
,” ASME J. Pressure Vessel Technol.
, 114
, pp. 201
–208
.10.1115/1.29290305.
Adibi-Asl
, R.
, Fanous
, I. F. Z.
, and Seshadri
, R.
, 2006
, “Elastic Modulus Adjustment Procedures-Improved Convergence Schemes
,” Int. J. Pressure Vessels Piping
, 83
, pp. 154
–160
.10.1016/j.ijpvp.2005.11.0026.
Claudia C.
Marin-Artieda
, and Gary F.
Dargush
, 2007
, “Approximate Limit Load Evaluation of Structural Frames Using Linear Elastic Analysis
,” J. Eng. Struct.
, 29
, pp. 296
–304
.10.1016/j.engstruct.2006.03.0137.
Seshadri
, R.
, and Hossain
, M. M.
, 2009
, “Simplified Limit Load Determination Using the mα-Tangent Method
,” ASME J. Pressure Vessel Technol.
, 131
(2
), p. 021213
.10.1115/1.30670018.
Mendelson
, A.
, 1968
, Plasticity: Theory and Applications
, MacMillan
, New York
.9.
Mura
, T.
, Rimawi
, W. H.
, and Lee
, S. L.
, 1965
, “Extended Theorems of Limit Analysis
,” Q. Appl. Math.
, 23
, pp. 171
–179
.10.
Pan
, L.
, and Seshadri
, R.
, 2002
, “Limit Load Estimation Using Plastic Flow Parameter in Repeated Elastic Finite Element Analyses
,” ASME J. Pressure Vessel Technology
, 124
, pp. 433
–439
.10.1115/1.149996011.
Seshadri
, R.
, and Mangalaramanan
, S. P.
, 1997
, “Lower Bound Limit Loads Using Variational Concepts: The mα–Method
,” Int. J. Pressure Vessels Piping
, 71
, pp. 93
–106
.10.1016/S0308-0161(96)00071-312.
Reinhardt
, W. D.
, and Seshadri
, R.
, 2003
, “Limit Load Bounds for the mα Multipliers
,” ASME J. Pressure Vessel Technol.
, 125
, pp. 11
–18
.10.1115/1.152685813.
Seshadri
, R.
, and Adibi-Asl
, R.
, 2007
, “Limit Loads of Pressure Components Using the Reference Two-Bar Structure
,” ASME J. Pressure Vessel Technol.
, 129
, pp. 280
–286
.10.1115/1.271643214.
ansys
, University Research Version 12.0
, SAS IP, Inc
.Copyright © 2013 by ASME
You do not currently have access to this content.