In this paper, the mα-tangent multiplier is used in conjunction with the elastic modulus adjustment procedure (EMAP) for limit load determination. This technique is applied to a number of mechanical components possessing different kinematic redundancies. By specifying spatial variations in the elastic modulus, numerous sets of statically admissible and kinematically admissible stress and strain distributions are generated, and limit loads for practical components are then determined using the mα-tangent method. The procedure ensures sufficiently accurate limit loads within a reasonable number of iterations. Results are compared with the inelastic finite element results and are found to be in satisfactory agreement.

References

1.
Borrvall
,
T.
,
2009
, “
A Heuristic Attempt to Reduce Transverse Shear Locking in Fully Integrated Hexahedra With Poor Aspect Ratio
,”
7th European LS-DYNA Conference
, May 14–15.
2.
Xia
,
K.
, and
Zhang Kenn
,
K. Q.
,
2009
, “
A Multiscale Finite Element Formulation for Axisymmetric Elastoplasticity With Volumetric Locking
,”
Int. J. Numer. Anal. Methods Geomech.
,
34
, pp.
1076
1100
.
3.
Jones
,
G. L.
, and
Dhalla
,
A. K.
,
1981
, “
Classification of Clamp Induced Stresses in Thin Walled Pipe
,”
Int. J. Pressure Vessels Piping
,
81
, pp.
17
23
.
4.
Seshadri
,
R.
, and
Fernando
,
C. P. D.
,
1992
, “
Limit Loads of Mechanical Components and Structures Using the GLOSS R-Node Method
,”
ASME J. Pressure Vessel Technol.
,
114
, pp.
201
208
.10.1115/1.2929030
5.
Adibi-Asl
,
R.
,
Fanous
, I
. F. Z.
, and
Seshadri
,
R.
,
2006
, “
Elastic Modulus Adjustment Procedures-Improved Convergence Schemes
,”
Int. J. Pressure Vessels Piping
,
83
, pp.
154
160
.10.1016/j.ijpvp.2005.11.002
6.
Claudia C.
Marin-Artieda
, and
Gary F.
Dargush
,
2007
, “
Approximate Limit Load Evaluation of Structural Frames Using Linear Elastic Analysis
,”
J. Eng. Struct.
,
29
, pp.
296
304
.10.1016/j.engstruct.2006.03.013
7.
Seshadri
,
R.
, and
Hossain
,
M. M.
,
2009
, “
Simplified Limit Load Determination Using the mα-Tangent Method
,”
ASME J. Pressure Vessel Technol.
,
131
(
2
), p.
021213
.10.1115/1.3067001
8.
Mendelson
,
A.
,
1968
,
Plasticity: Theory and Applications
,
MacMillan
,
New York
.
9.
Mura
,
T.
,
Rimawi
,
W. H.
, and
Lee
,
S. L.
,
1965
, “
Extended Theorems of Limit Analysis
,”
Q. Appl. Math.
,
23
, pp.
171
179
.
10.
Pan
,
L.
, and
Seshadri
,
R.
,
2002
, “
Limit Load Estimation Using Plastic Flow Parameter in Repeated Elastic Finite Element Analyses
,”
ASME J. Pressure Vessel Technology
,
124
, pp.
433
439
.10.1115/1.1499960
11.
Seshadri
,
R.
, and
Mangalaramanan
,
S. P.
,
1997
, “
Lower Bound Limit Loads Using Variational Concepts: The mα–Method
,”
Int. J. Pressure Vessels Piping
,
71
, pp.
93
106
.10.1016/S0308-0161(96)00071-3
12.
Reinhardt
,
W. D.
, and
Seshadri
,
R.
,
2003
, “
Limit Load Bounds for the mα Multipliers
,”
ASME J. Pressure Vessel Technol.
,
125
, pp.
11
18
.10.1115/1.1526858
13.
Seshadri
,
R.
, and
Adibi-Asl
,
R.
,
2007
, “
Limit Loads of Pressure Components Using the Reference Two-Bar Structure
,”
ASME J. Pressure Vessel Technol.
,
129
, pp.
280
286
.10.1115/1.2716432
14.
ansys
,
University Research Version 12.0
,
SAS IP, Inc
.
You do not currently have access to this content.