Ensuring sufficient safety against ratchet is a fundamental requirement in pressure vessel design. Determining the ratchet boundary can prove difficult and computationally expensive when using a full elastic–plastic finite element analysis and a number of direct methods have been proposed that overcome the difficulties associated with ratchet boundary evaluation. Here, a new approach based on fully implicit finite element methods, similar to conventional elastic–plastic methods, is presented. The method utilizes a two-stage procedure. The first stage determines the cyclic stress state, which can include a varying residual stress component, by repeatedly converging on the solution for the different loads by superposition of elastic stress solutions using a modified elastic–plastic solution. The second stage calculates the constant loads which can be added to the steady cycle while ensuring the equivalent stresses remain below a modified yield strength. During stage 2 the modified yield strength is updated throughout the analysis, thus satisfying Melan's lower bound ratchet theorem. This is achieved utilizing the same elastic plastic model as the first stage, and a modified radial return method. The proposed methods are shown to provide better agreement with upper bound ratchet methods than other lower bound ratchet methods, however limitations in these are identified and discussed.

References

1.
Bree
,
J.
,
1967
, “
Elasto-Plastic Behaviour of Thin Tubes Subjected to Internal Pressure and Intermittent Heat Fluxes With Application to Fast Reactor Fuel Elements
,”
J. Strain Anal.
,
2
, pp.
226
238
.10.1243/03093247V023226
2.
Melan
,
E.
,
1936
, “
Theorie Statisch Unbestimmter Systeme aus Ideal-Plastischem Bastoff
,”
Sitzungsber. Akad. Wiss. Wien, Abtiia
,
145
, pp.
195
218
.
3.
Koiter
,
W. T.
,
1960
, “
General Theorems for Elastic Plastic Solids
,”
Progress in Solid Mechanics
,
J. N.
Sneddon
and
R.
Hill
, eds., Vol.
1
,
North Holland, Amsterdam
, pp.
167
221
.
4.
Chen
,
H. F.
,
2010
, “
Lower and Upper Bound Shakedown Analysis of structures With Temperature-Dependent Yield Stress
,”
J. Pressure Vessel Technol.
,
132
, pp.
1
8
.
5.
Staat
,
M.
, and
Heitzer
,
M.
,
2001
, “
LISA a European Project for FEM-Based Limit and Shakedown Analysis
,”
Nucl. Eng. Des.
,
206
, pp.
151
166
.10.1016/S0029-5493(00)00415-5
6.
Muscat
,
M.
,
Mackenzie
,
D.
, and
Hamilton
,
R.
,
2003
, “
Evaluating Shakedown by Non-Linear Static Analysis
,”
Comput. Struct.
,
81
, pp.
1727
1737
.10.1016/S0045-7949(03)00181-0
7.
Abdalla
,
H. F.
,
Megahed
,
M. M.
, and
Younan
,
M. Y. A.
,
2007
, “
A Simplified Technique for Shakedown Limit Load Determination
,”
Nucl. Eng. Des.
,
237
, pp.
1231
1240
.10.1016/j.nucengdes.2006.09.033
8.
Mackenzie
,
D.
,
Boyle
,
J. T.
, and
Hamilton
,
R.
,
2000
, “
The Elastic Compensation Method for Limit and Shakedown Analysis: A Review
,”
J. Strain Anal. Eng. Des.
,
35
(
3
), pp.
171
188
.10.1243/0309324001514332
9.
Chen
,
H. F.
, and
Ponter
,
A. R. S.
,
2010
, “
A Direct Method on the Evaluation of Ratchet Limit
,”
ASME J. Pressure Vessel Technol.
,
132
(
4
), p.
041202
.10.1115/1.4001524
10.
Polizzotto
,
C.
,
1993
, “
On the Conditions to Prevent Plastic Shakedown of Structures: Part I-Theory
,”
Trans. ASME, J. Appl. Mech.
,
60
, pp.
15
19
.10.1115/1.2900739
11.
Polizzotto
,
C.
,
1993
, “
On the Conditions to Prevent Plastic Shakedown of Structures: Part II-The Plastic Shakedown Limit Load
,”
Trans. ASME, J. Appl. Mech.
,
60
, pp.
20
25
.10.1115/1.2900750
12.
Polizzotto
,
C.
,
1993
, “
A Study on Plastic Shakedown of Structures: Part I-Basic Properties
,”
Trans. ASME, J. Appl. Mech.
,
60
, pp.
318
323
.10.1115/1.2900795
13.
Polizzotto
,
C.
,
1993
, “
A Study on Plastic Shakedown of Structures: Part II-Theorems
,”
Trans. ASME, J. Appl. Mech.
,
60
, pp.
324
330
.10.1115/1.2900796
14.
Martin
,
M.
,
2009
, “
A Hybrid Procedure for Ratchet Boundary Prediction
,” PVP2009-77474, Pressure Vessels and Piping, Prague, Czech Republic.
15.
Adibi-Asi
,
R.
, and
Reinhardt
,
W.
,
2010
, “
Ratchet Boundary Determination Using a Noncyclic Method
,”
ASME J. Pressure Vessel Technol.
,
132
(
2
), p.
021201
.10.1115/1.4000506
16.
Mackenzie
,
D.
,
Boyle
,
J. T.
, and
Hamilton
,
R.
,
2001
, “
The Elastic Compensation Method for Limit and Shakedown Analysis: A Review
,”
J. Strain Anal. Eng. Des.
,
35
(
3
), pp.
171
188
.10.1243/0309324001514332
17.
Chen
,
H.
, and
Ponter
,
A.
,
2001
, “
A Method for the Evaluation of a Ratchet Limit and the Amplitude of Plastic Strain for Bodies Subjected to Cyclic Loading
,”
Eur. J. Mech. A/Solids
,
20
, pp.
555
571
.10.1016/S0997-7538(01)01162-7
18.
Ure
,
J.
,
Chen
,
H.
,
Li
T.
,
Chen
,
W.
,
Tipping
,
D.
, and
Mackenzie
,
D.
,
2011
, “
A Direct Method for the Evaluation of Lower and Upper Bound Ratchet Limits
,”
International Conference on the Mechanical Behaviour of Materials
,
Lake Como, Italy
.
19.
Abou-Hanna
,
J.
, and
McGreevy
,
T. E.
,
2011
, “
A Simplified Ratchet Limit Analysis Using Modified Yield Surface
,”
Int. J. Pressure Vessels Piping
,
88
, pp.
11
18
.10.1016/j.ijpvp.2010.12.001
20.
Nguyen-Tajan
, et al.,
2003
, “
Determination of the Stabilized Response of a Structure Undergoing Cyclic Thermal-Mechanical Loads by a Direct Cyclic Method
,”
Abaqus Users' Conference Proceedings
.
21.
Abaqus 6.10
, 2010, SIMULIA.
22.
Jappy
,
A.
,
Mackenzie
,
D.
, and
Chen
,
H.
,
2012
, “
A Fully Implicit, Lower Bound, Multi-Axial Solution Strategy for Direct Ratchet Boundary Evaluation: Numerical Development
,” PVP2012-78315, Toronto, Ontario, Canada.
23.
Gokhfeld
,
D. A.
, and
Cherniavsky
,
O. F.
,
1980
,
Limit Analysis of Structures at Thermal Cycling
,
Sijthoff & Noordhoff
,
Alphen aan den Rijn, The Netherlands
.
You do not currently have access to this content.