Simplified limit analysis techniques have already been employed for limit load estimation on the basis of linear elastic finite element analysis (FEA) assuming elastic-perfectly-plastic material model. Due to strain hardening, a component or a structure can store supplementary strain energy and hence carries additional load. In this paper, an iterative elastic modulus adjustment scheme is developed in context of strain hardening material model utilizing the “strain energy density” theory. The proposed algorithm is then programmed into repeated elastic FEA and results from the numerical examples are compared with inelastic FEA results.

References

1.
Borrvall
,
T.
,
2009
, “
A Heuristic Attempt to Reduce Transverse Shear Locking in Fully Integrated Hexahedra With Poor Aspect Ratio
,”
7th European LS-DYNA Conference
,
May 14–15
.
2.
Xia
,
K.
, and
Zhang Kenn
,
K. Q.
,
2009
, “
A Multiscale Finite Element Formulation for Axisymmetric Elastoplasticity With Volumetric Locking
,”
Int. J. Numer. Analyt. Meth. Geomech.
,
34
, pp.
1076
1100
.
3.
Jones
,
G. L.
, and
Dhalla
,
A. K.
,
1981
, “
Classification of Clamp Induced Stresses in Thin Walled Pipe
,”
Int. J. Pressure Vessels Piping
,
81
, pp.
17
23
.
4.
Seshadri
,
R.
, and
Fernando
,
C. P. D.
,
1992
, “
Limit Loads of Mechanical Components and Structures Using the GLOSS R-Node Method
,”
Trans. ASME J. Pressure Vessel Technol.
,
114
, pp.
201
208
.10.1115/1.2929030
5.
Webster
,
G.
, and
Ainsworth
,
R. A.
,
1994
,
High Temperature Component Life Assessment
,
London, Chapman and Hall
.
6.
Ponter
,
A. R. S.
,
Fuschi
,
P.
, and
Engelhardt
,
M.
,
2000
, “
Limit Analysis for a General Class of Yield Conditions
,”
Eur. J. Mech. A/Solids
,
19
, pp.
401
421
.10.1016/S0997-7538(00)00170-4
7.
Ponter
,
A. R. S.
, and
Engelhardt
,
M.
,
2000
, “
Shakedown Limit for a General Yield Condition
,”
Eur. J. Mech. A/Solids
,
19
, pp.
423
445
.10.1016/S0997-7538(00)00171-6
8.
Hamilton
R.
, and
Boyle
J. T.
,
2002
, “
Simplified Lower Bound Limit Analysis of Transversely Loaded Thin Plates Using Generalised Yield Criteria
,”
Thin-Walled Struct.
,
40
, pp.
503
522
.10.1016/S0263-8231(02)00007-1
9.
Adibi-Asl
,
R.
,
Fanous
,
I. F. Z.
, and
Seshadri
,
R.
,
2006
, “
Elastic Modulus Adjustment Procedures-Improved Convergence Schemes
,”
Int. J. Pressure Vessels Piping
,
83
, pp.
154
160
.10.1016/j.ijpvp.2005.11.002
10.
Marin-Artieda
,
C. C.
, and
Dargush
,
G. F.
,
2007
, “
Approximate Limit Load Evaluation of Structural Frames Using Linear Elastic Analysis
,”
Eng. Struct.
,
29
, pp.
296
304
.10.1016/j.engstruct.2006.03.013
11.
Adibi-Asl
,
R.
, and
Reinhardt
,
W. D.
,
2009
, “
Shakedown/Ratcheting Boundary Determination Using Iterative Linear Elastic Schemes
,”
ASME Pressure Vessels and Piping Division Conference
, pp.
109
119
, Paper No. PVP2009-77863.
12.
Adibi-Asl
,
R.
, and
Seshadri
,
R.
,
2007
, “
Simplified Limit Load Estimation of Components With Cracks Using the Reference Two-Bar Structure
,”
ASME J. Pressure Vessel Technol.
,
131
(
1
), p.
011204
.10.1115/1.3012294
13.
Calladine
,
C. R.
, and
Drucker
,
D. C.
,
1962
, “
A Bound Method for Creep Analysis of Structures: Direct Use of Solutions in Elasticity and Plasticity
,”
J. Mech. Eng. Sci.
,
4
(
1
), pp.
1
11
.10.1243/JMES_JOUR_1962_004_003_02
14.
Calladine
,
C. R.
, and
Drucker
,
D. C.
,
1962
, “
Nesting Surfaces for Constant Rate of Energy Dissipation in Creep
,”
Q. Appl. Math.
,
20
, pp.
79
84
.
15.
Mendelson
,
A.
,
1968
,
Plasticity: Theory and Applications
,
MacMillan
,
New York
.
16.
Pan
,
L.
, and
Seshadri
,
R.
,
2002
, “
Limit Load Estimation Using Plastic Flow Parameter in Repeated Elastic Finite Element Analysis
,”
ASME J. Pressure Vessel Technol.
,
124
, pp.
433
439
.10.1115/1.1499960
17.
Mura
,
T.
,
Rimawi
,
W. H.
, and
Lee
,
S. L.
,
1965
, “
Extended Theorems of Limit Analysis
,”
Q. Appl. Math.
,
23
, pp.
171
179
.
18.
Molski
,
K.
, and
Glinka
,
G.
,
1981
, “
A Method of Elastic-Plastic Stress and Strain Calculation at a Notch Root
,”
Mater. Sci. Eng.
,
50
(
2
), pp.
93
100
.10.1016/0025-5416(81)90089-6
19.
Hosford
,
W. F.
,
2005
,
Mechanical Behavior of Materials
,
Cambridge University Press
,
New York
.
20.
SAS IP, Inc., ansys, University Research version 11.0.
21.
Mahmood
,
S. L.
,
Haddara
,
M. R.
, and
Seshadri
,
R.
,
2010
, “
Limit Loads of Ship Structure Components Using the Elastic Modulus Adjustment Procedure (EMAP)
,”
Ocean Eng.
,
37
, pp.
1452
1463
.10.1016/j.oceaneng.2010.08.004
22.
Adibi-Asl
,
R.
, and
Seshadri
,
R.
,
2010
, “
Improved Prediction Method for Estimating Notch Elastic Plastic Strain
,”
Int. J. Pressure Vessels Technol.
,
132
, p.
011401
.10.1115/1.4000371
You do not currently have access to this content.