Creep-fatigue interaction is a principal cause of failures of many engineering components under high temperature and cyclic loading. In this work, stress controlled creep-fatigue interaction tests are carried out for modified 9Cr-1Mo (P91) steel. In order to study the damage mechanism of P91 steel under creep-fatigue interaction, Scanning Electron Microscopy (SEM) of specimen fracture morphology and in-situ observation experiments were conducted. Based on the ductility exhaustion theory and creep-fatigue interaction tests data, the modified ductility exhaustion life prediction model was developed. The predicted results are in a good agreement with the experiment. By comparison with frequency separation model, the life predicted by ductility exhaustion model is better than frequency separation model obviously. The results show that different stress amplitude and mean stress have great effect on the fracture damage mechanism when the hold time is invariable. By the SEM analysis of fracture morphology, the damage characters of creep, creep-fatigue interaction and fatigue can be partitioned. The specimen crack initiation source is the modified 9Cr-1Mo steel inclusion. Therefore, this work can provide a reference of life prediction and design for high temperature materials and components.

References

References
1.
Takahashi
,
Y.
,
2008
, “
Study on Creep-Fatigue Evaluation Procedures for High-Chromiun Steels—Part I: Test Results and Life Prediction Based on Measured Stress Relaxation
,”
Int. J. Pressure Vessels Piping
,
85
, pp.
406
422
.10.1016/j.ijpvp.2007.11.008
2.
Viswanathan
,
R.
, and
Bakker
,
W.
,
2001
, “
Materials for Ultra Supercritical Coal Power Plants—Boiler Materials: Part 1
,”
J. Mater. Eng. Perform.
,
10
, pp.
81
95
.10.1361/105994901770345394
3.
Lee
,
H. Y.
,
Lee
,
S. H.
,
Kim
,
J. B.
, and
Lee
,
J. H.
,
2007
, “
Creep-Fatigue Damage for a Structure With Dissimilar Metal Welds of Modified 9Cr-1Mo Steel and 316 Stain Steel
,”
Int. J. Fatigue
,
29
, pp.
1868
1879
.10.1016/j.ijfatigue.2007.02.009
4.
Zhang
,
G. D.
,
Zhao
,
Y. F.
,
Xue
,
F.
,
Wang
,
Z. X.
, and
Zhou
,
C. Y.
,
2010
, “
Life Prediction of High temperature Welded Component by Skeletal Point Rupture Stress
,”
Adv. Mater. Res.
,
118–120
, pp.
156
160
.10.4028/www.scientific.net/AMR.118-120.156
5.
Hyde
,
T. H.
,
Becker
,
A. A.
,
Sun
,
W.
, and
Williams
,
J. A.
,
2006
, “
Finite-Element Creep Damage Analyses of P91 Pipes
,”
Int. J. Pressure Vessels Piping
,
83
, pp.
853
863
.10.1016/j.ijpvp.2006.08.013
6.
Jiang
,
W. C.
,
Gong
,
J. M.
,
Chen
,
H.
, and
Tu
,
S. T.
,
2008
, “
The Effect of Filler Metal Thickness on Residual Stress and Creep for Stainless-Steel Plate-Fin Structure
,”
Int. J. Pressure Vessels Piping
,
85
, pp.
569
574
.10.1016/j.ijpvp.2008.02.007
7.
Jiang
,
W. C.
,
Gong
,
J. M.
, and
Tu
,
S. T.
,
2008
, “
Finite Element Analysis of the Effect of Brazed Residual Stress on Creep for Stainless Steel Plate-Fin Structure
,”
ASME J. Pressure Vessel Technol.
,
130
, p.
041203
.10.1115/1.2967807
8.
Jiang
,
W. C.
,
Gong
,
J. M.
,
Tu
,
S. T.
, and
Chen
,
H.
,
2009
, “
Three-Dimensional Numerical Simulation of Brazed Residual Stress and Its High-Temperature Redistribution for Stainless Steel Plate-Fin Structure
,”
Mater. Sci. Eng., A
,
499
, pp.
293
298
.10.1016/j.msea.2007.11.118
9.
Guo
,
Y. Z.
, and
Zneg
,
Z. J.
,
1995
, “
The Low-Cycle Fatigue Life Prediction at Medium Temperature for a Pressure Vessel With Large Opening
,”
Int. J. Pressure Vessels Piping
,
62
, pp.
167
170
.10.1016/0308-0161(94)00006-5
10.
Jiang
,
W. C.
,
Gong
,
J. M.
, and
Tu
,
S. T.
,
2011
, “
Fatigue Life Prediction of a Stainless Steel Plate-Fin Structure Using Equivalent-Homogeneous-Solid Method
,”
Mater. Des.
,
32
, pp.
4936
4942
.10.1016/j.matdes.2011.05.048
11.
Kuroda
,
M.
,
2001
, “
Extremely Low Cycle Fatigue Life Prediction Based on a New Cumulative Fatigue Damage Model
,”
Int. J. Fatigue
,
24
, pp.
699
703
.10.1016/S0142-1123(01)00170-0
12.
Manson
,
S. S.
,
1966
,
Thermal Stress and Low Cycle Fatigue
,
McGraw Hill
,
New York
, pp.
125
192
.
13.
He
,
J. R.
,
1988
,
Metal Fatigue at High Temperature
,
Science press
,
Peking
. (in Chinese).
14.
Coffin
,
L. F.
,
1974
, “
Fatigue at High Temperature-Prediction and Interpretation
,” James Clayton Memorial Lecture at the University of Sheffield, Institute of Mechanical Engineers, London, April, Vol.
188
, pp.
109
127
.
15.
Goswami
,
T.
,
2004
, “
Development of Generic Creep-Fatigue Life Prediction Models
,”
Mater. Des.
,
25
, pp.
277
288
.10.1016/j.matdes.2003.11.001
16.
Aoto
,
K.
,
Komine
,
R.
,
Ueno
,
F.
,
Kawasaki
,
H.
, and
Wada
,
Y.
,
1994
, “
Creep-Fatigue Evaluation of Normalized and Tempered Modified 9Cr-1Mo
,”
Nucl. Eng. Des.
,
153
, pp.
97
110
.10.1016/0029-5493(94)90024-8
17.
Fan
,
Z. C.
,
Chen
,
X. D.
,
Chen
,
L.
, and
Jiang
,
J. L.
,
2007
, “
Fatigue-creep Behavior of 1.25Cr0.5Mo Steel at High Temperature and Its Life Prediction
,”
Int. J. Fatigue
,
29
, pp.
1174
-
1183
.10.1016/j.ijfatigue.2006.07.008
18.
Fournier
,
B.
,
Sauzay
,
M.
,
Caes
,
C.
,
Noblecourt
,
M.
,
Mottot
,
M.
,
Bougault
,
A.
,
Rabeau
,
V.
, and
Pineau
,
A.
,
2008
, “
Creep Fatigue Oxidation Interactions in a 9Cr1Mo Martensitic Steel. Part I: Effect of Tensile Holding Period on Fatigue Lifetime
,”
Int. J. Fatigue
,
30
(
4
), pp.
649
662
.10.1016/j.ijfatigue.2007.05.007
19.
Fournier
,
B.
,
Sauzay
,
M.
,
Caes
,
C.
,
Noblecourt
,
M.
,
Mottot
,
M.
,
Bougault
,
A.
,
Rabeau
,
V.
,
Man
,
J.
,
Gillia
,
O.
,
Lemoine
,
P.
, and
Pineau
,
A.
,
2008
, “
Creep Fatigue Oxidation Interactions in a 9Cr1Mo Martensitic Steel. Part III: Lifetime Prediction
,”
Int. J. Fatigue
,
30
(
10–11
), pp.
1797
1812
.10.1016/j.ijfatigue.2008.02.006
20.
Chen
,
L.
,
Jiang
,
J. L.
,
Fan
,
Z. C.
,
Chen
,
X. D.
, and
Yang
,
T. C.
,
2007
, “
A New Model for Life Prediction of Fatigue-Creep Interaction
,”
Int. J. Fatigue
,
29
(
4
), pp.
615
619
.10.1016/j.ijfatigue.2006.07.009
21.
Nam
,
S. W.
,
Lee
,
S. C.
, and
Lee
,
J. M.
,
1995
, “
The Effect of Creep Cavitation on the Fatigue Life Under Creep-Fatigue Interaction
,”
Nucl. Eng. Des.
,
153
, pp.
213
221
.10.1016/0029-5493(95)90013-6
22.
Yeol
,
J. C.
, and
Nam
,
S. W.
,
1999
, “
Estimation of the Damaging Energy Under Creep-Fatigue Interaction Conditions in 1Cr-Mo-V Steel
,”
Scr. Mater.
,
40
(
5
), pp.
623
629
.10.1016/S1359-6462(98)00471-0
23.
Goswami
,
T.
,
1997
, “
Low Cycle Fatigue Life Prediction—A New Model
,”
Int. J. Fatigue
,
19
(
2
), pp.
109
115
.10.1016/S0142-1123(96)00065-5
24.
Fan
,
Z. C.
,
Chen
,
X. D.
,
Chen
,
L.
, and
Jiang
,
J. L.
,
2006
, “
Prediction Method for Fatigue-Creep Interaction Life Based on Ductility Exhaustion Theory
,”
Acta Metall. Sin. (Engl. Lett.)
,
42
(
4
), pp.
415
420
. (in Chinese)
25.
Edmund
,
H. G.
, and
While
,
D. J.
,
1966
, “
Observation of the Effect of Creep Relaxation on High-Strain Fatigue
,”
J. Mech. Eng. Sci.
,
8
(
3
), pp.
310
321
.10.1243/JMES_JOUR_1966_008_040_02
26.
Chen
,
G. L.
,
Yang
,
W. Y.
, and
Shu
,
G. G.
,
1991
, “
Fatigue-Creep Interaction and Fracture Model of Cr-Mo-V Heat Resistant Steel in Steam Pipe Line
,”
Acta Metall. Sin. (Engl. Lett)
,
27
(
2
), pp.
A137
A142
. (in Chinese)
27.
Halford
,
G. R.
,
1987
, “
Thermal Stress II
,”
E. B.
Hetnarski
, ed.,
Elsevier Science Publication
,
Oxford (United Kingdom)
, pp.
330
428
.
28.
Anon
,
1976
, “
Code Case N-47, ASME Boiler and Pressure Vessel Code. Criteria for Design of Elevated Temperature
,”
Class I Components in Section III, Division I
,
ASME
,
New York
.
You do not currently have access to this content.