The pipes in offshore and marine structures are mainly made of low-strength structural steels such as A537 steel and are subjected to the effects of both corrosive medium and cyclic loading caused by many factors. Reinforcement and repair of components using composite patches can be used for piping to reduce the stress intensity factors at the crack-front of a corrosion fatigue crack. In this paper 3D finite element analyses in general mixed-mode fracture condition are performed to study the crack growth behavior of repaired pipes subjected to internal cyclic pressure. The required formulations, crack growth modeling, and remeshing are automatically handled by developing an ANSYS parametric design language (APDL) program. For this purpose an offshore pipe made of low-strength steel containing an initial fatigue corrosion crack repaired by glass/epoxy composite patch is considered. A parametric study will be performed to find the effects of patch thickness on fatigue crack growth life extension and crack-front shape of the repaired pipes.

References

References
1.
Raju
,
I. S.
, and
Newman
,
J. C.
, Jr.
,
1982
, “
Stress-Intensity Factors for Internal and External Surface Cracks in Cylindrical Vessels
,”
ASME J. Press. Vess. Tech.
,
104
, pp.
293
298
.10.1115/1.3264220
2.
Nishioka
,
T.
, and
Atluri
,
S. N.
,
1982
, “
Analysis of Surface Flaw in Pressure Vessel by New 3-Dimensional Alternating Method
,”
ASME J. Press. Vess. Tech.
,
104
, pp.
299
307
.10.1115/1.3264221
3.
Rees
,
D. W. A.
,
1989
, “
Fatigue Crack Growth in Thick Walled Cylinders Under Pulsating Internal Pressure
,”
Eng. Fract. Mech.
,
33
, pp.
927
940
.10.1016/0013-7944(89)90108-2
4.
Becker
,
A. A.
,
Plant
,
R. C. A.
, and
Parker
,
A. P.
,
1993
, “
Axial Cracks in Pressurized Eroded Autofrettage Thick Cylinders
,”
Int. J. Fract.
,
63
,pp.
113
134
.10.1007/BF00017281
5.
Bergman
,
M.
,
1995
, “
Stress Intensity Factors for Circumferential Surface Cracks in Pipes
,”
Fatigue Fract. Eng. M.
,
18
, pp.
1155
1172
.10.1111/j.1460-2695.1995.tb00845.x
6.
Carpinteri
,
A.
, and
Brighenti
,
R.
,
1998
, “
Circumferential Surface Flaws in Pipes Under Cyclic Axial Loading
,”
Eng. Fract. Mech.
,
60
, pp.
383
396
.10.1016/S0013-7944(98)00036-8
7.
ASTM E647-93
,
1995
, “
Standard Test Method for Measurement of Fatigue Crack Growth Rate
,”
Annual Book of ASTM Standards 1995
,
3
(
1
).
8.
Carpinteri
,
A.
,
1993
, “
Shape Change of Surface Cracks in Round Bars Under Cyclic Axial Loading
,”
Int. J. Fatigue
,
15
, pp.
21
26
.10.1016/0142-1123(93)90072-X
9.
Carpinteri
,
A.
,
Brighenti
,
R.
, and
Spagnoli
,
A.
,
2000
, “
Fatigue Growth Simulation of Part-Through Flaws in Thick-Walled Pipes Under Rotary Bending
,”
Int. J. Fatigue
,
22
, pp.
1
9
.10.1016/S0142-1123(99)00115-2
10.
Ivankovic
,
A.
, and
Venizelos
,
G. P.
,
1998
, “
Rapid Crack Propagation in Plastic Pipe: Predicting Full-Scale Critical Pressure From S4 Test Results
,”
Eng. Fract. Mech.
,
59
, pp.
607
622
.10.1016/S0013-7944(97)00159-8
11.
Brighenti
,
R.
,
2000
, “
Axially Cracked Pipes Under Pulsating Internal Pressure
,”
Int. J. Fatigue
,
22
, pp.
559
567
.10.1016/S0142-1123(00)00035-9
12.
Yeon-Sik
,
Y.
, and
Ando
,
K.
,
1999
, “
Circumferential Fatigue Crack Growth and Crack Opening Behavior in Pipe Subjected to Bending Moment
,” SMIRT-15,
Seoul, Korea
,
15
(
5
), pp.
343
350
.
13.
Chattopadhyay
,
J.
,
Dutta
,
B. K.
, and
Kushwaha
,
H. S.
,
2000
, “
Experimental and Analytical Study of Three Point Bend Specimen and Through-Wall Circumferentially Straight Pipe
,” International Journal of Pressure Vessels and Piping,
77
,
455
471
.
14.
Vassilaros
,
M. G.
,
Hays
,
R.
,
Gudas
,
A.
, and
John
,
P.
,
1986
, “
J-Resistance Curve Analysis for ASTM A106 Steel 8-Inch Diameter Pipe and Compact Tension Specimens
,”
Fracture Mechanics Seventeenth Volume, ASTM/STP 905
,
American Society for Testing and Materials
,
Philadelphia
, pp.
435
453
.
15.
Singh
,
P. K.
,
Vaze
,
K. K.
,
Bhasin
,
V.
,
Kushwaha
,
H. S.
,
Gandhi
,
P.
, and
Ramachandra Murthy
,
D. S.
,
2003
, “
Crack Initiation and Growth Behaviour of Circumferentially Cracked Pipes Under Cyclic and Monotonic Loading
,”
Int. J. Press. Vess. Pip.
,
80
, pp.
629
640
.10.1016/S0308-0161(03)00132-7
16.
Shahani
,
A. R.
, and
Amini Fasakhodi
,
M. R.
,
2009
, “
Finite Element Analysis of Dynamic Crack Propagation Using Re-Meshing Technique
,”
Mater. Design
,
30
, pp.
1032
1041
.10.1016/j.matdes.2008.06.049
17.
Khoramishad
,
H.
, and
Ayatollahi
,
M. R.
,
2009
, “
Finite Element Analysis of a Semi-Elliptical External Crack in a Buried Pipe
,”
Trans. Can. Soc. Mech. Eng.
,
33
, pp.
399
409
.
18.
Khoramishad
,
H.
, and
Ayatollahi
,
M. R.
,
2010
, “
Stress Intensity Factors for an Axially Oriented Internal Crack Embedded in a Buried Pipe
,”
Int. J. Press. Vess. Pip.
,
87
, pp.
165
169
.10.1016/j.ijpvp.2010.02.005
19.
Department of Transportation,
1999
, “
Pipeline Safety: Gas and Hazardous Liquid Pipeline Repair
,”
Federal Register
, 49 CFR Parts 192 and 195,
64
(
66
), p. 16882. Available at: http://www.gpo.gov/fdsys/pkg/FR-1999-04-07/pdf/99-8574.
20.
Fawley
,
N. C.
,
1994
, “
Development of Fiberglass Composite Systems for Natural Gas Pipeline Service
,” Final Report,
Gas Research Institute
, GRI-95/0072.
21.
Stephens
,
D. R.
, and
Kilinski
,
T. J.
,
1998
, “
Field Validation of Composite Repair of Gas Transmission Pipelines
,” Final Report,
Gas Research Institute
,
Chicago, IL
, GRI-98/0032.
22.
Kuhlman
,
C. J.
,
Lindholm
,
U. S.
,
Stephens
,
D. R.
,
Kilinski
,
T. J.
, and
Francini
,
R. B.
,
1995
, “
Long-Term Reliability of Gas Pipeline Repairs by Reinforced Composites
,” Final Report,
Gas Research Institute
,
Chicago, IL
, GRI-95/0071.
23.
Block
,
N.
, and
Kishel
,
J.
,
1995
, “
Clock Spring Reinforcement of Elbow Fittings
,” Topical Report,
Gas Research Institute
, GRI-93/0346.
24.
Alexander
,
C. R.
, and
Pitts
,
D. A.
,
2005
, “
Evaluation of the Aquawrap System in Repairing Mechanically Damaged Pipes Air Logistics Corporation
,”
Azusa, CA
.
25.
Alexander
,
C. R.
, and
Wilson
,
F. D.
,
2000
, “
Recent Test Results and Field Experience With Armor Plate Pipe Wrap Repairing Corroded and Mechanically-Damaged Pipes
,”
2000 Pigging Conference
,
Houston, TX
.
26.
Bian
,
L.
, and
Taheri
,
F.
,
2008
, “
Investigation of Fatigue Crack Propagation in Line Pipes Containing an Angled Surface Flaw
,”
ASME J. Press. Vess. Tech.
,
130
, p.
011405
.10.1115/1.2826416
27.
Wittenberghea
,
J. V.
,
De Baetsa
,
P.
,
De Waelea
,
W.
,
Buib
,
T. T.
, and
Roeckb
,
G. D.
,
2011
, “
Evaluation of Fatigue Crack Propagation in a Threaded Pipe Connection Using an Optical Dynamic 3D Displacement Analysis Technique
,”
Eng. Fail. Anal.
,
18
, pp.
1115
1121
.10.1016/j.engfailanal.2010.12.013
28.
American Society of Mechanical Engineers
,
2003
,
Gas Transmission and Distribution Piping Systems, ASME B31.8
,
New York
.
29.
American Society of Mechanical Engineers
,
2003
,
Liquid Transportation System for Hydrocarbons, Liquid Petroleum Gas, Anhydrous Ammonia and Alcohols, ASME B31.4
,
New York
.
30.
American Society of Mechanical Engineers,
2006
,
PCC-2-2006 Repair of Pressure Equipment and Piping Standard
,
2006 ed.
,
ASME
,
New York
.
31.
Richard
,
H. A.
,
Buchholz
,
F. G.
,
Kulmer
,
G.
, and
Schollmann
,
M.
,
2003
, “
2D and 3D Mixed Mode Criteria
,”
Adv. Fract. Damage Mech.
,
251
, pp.
251
260
.10.4028/www.scientific.net/KEM.251-252.251
32.
Duan
,
M. L.
,
James
,
C. M.
, and
Li
,
J. L.
,
1999
, “
Application of the Pivot Point on the FCP Diagram to Low-Temperature Fatigue of Materials
,”
Int. J. Offsh. Pol. Eng.
,
9
(
1
), pp.
68
72
.
33.
Hosseini-Toudeshky
,
H.
,
Saber
,
M.
, and
Mohammadi
,
B.
,
2008
, “
Mixed-Mode 3-D Crack Propagation of Repaired Thin Aluminum Panels Using Single-Side Composite Patches
,”
Int. J. Fract.
,
153
, pp.
105
116
.10.1007/s10704-008-9303-6
34.
Hosseini-Toudeshky
,
H.
,
Mohammadi
,
B.
, and
Bakhshandeh
,
S.
,
2009
, “
Crack Trajectory Analysis of Single-Side Repaired Thin Panels in Mixed-Mode Conditions Using Glass/Epoxy Patches
,”
Comput. Struct.
,
86
, pp.
997
1005
.10.1016/j.compstruc.2007.04.015
35.
Hosseini-Toudeshky
,
H.
,
Ghaffari
,
M. A.
, and
Mohammadi
,
B.
,
2012
, “
Finite Element Fatigue Propagation of Induced Cracks by Stiffeners in Repaired Panels With Composite Patches
,”
Compost. Struct.
,
94
, pp.
1771
1780
.10.1016/j.compstruct.2012.01.002
36.
Hosseini-Toudeshky
,
H.
, and
Mohammadi
,
B.
,
2009
,
Thermal Residual Stresses Effects on Fatigue Crack Growth of Repaired Panels Bounded With Various Composite materials
,”
Compost. Struct.
,
89
, pp.
216
223
.10.1016/j.compstruct.2008.07.029
37.
Krueger
,
R.
,
2002
, “
The Virtual Crack Closure Technique, History, Approach and Applications
,” NASA/CR-2002-211628, ICASE Report No. 2002-10.
38.
ASTM A537/A537M-8
,
2004
, “
Standard Specification for Pressure Vessel Plates, Heat-Treated, Carbon-Manganese-Silicon Steel
,” Annual Book of ASTM Standard
2004
,
1
(
4
).
You do not currently have access to this content.