Axially symmetric fiber-reinforced polymer composite structures, such as pressure vessels and piping, are being widely used in different industrial applications where combined loading conditions may be applied. It is imperative to determine a suitable fiber angle, or a distribution of fiber angles, along the longitudinal direction of the structure in order to achieve best performance in terms of mechanical behavior and strength for structures subjected to combined loadings. To this end, an approach combining netting analysis and Tsai-Wu failure theory was employed as a design tool to assess critical fiber angles at which applied loadings would cause a structure to fail. Together, the proposed netting analysis and failure theory-based approach constitute a simple, expedient, and convenient design process for complex-shaped structures.

References

1.
Farin
,
G.
,
1990
,
Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide
,
Academic Press Inc.
,
Boston, MA
.
2.
Ayranci
,
C.
, and
Carey
,
J.
,
2008
,
“2D Braided Composites: A Review for Stiffness Critical Applications,”
Compos. Struct.
,
85
(
1
), pp.
43
58
.10.1016/j.compstruct.2007.10.004
3.
Carey
,
J.
,
Munro
,
M.
, and
Fahim
,
A.
,
2003
,
“Longitudinal Elastic Modulus Prediction of a 2-D Braided Fiber Composite,”
J. Reinf. Plast. Compos.
,
22
(
9
), pp.
813
831
.10.1177/0731684403022009003
4.
Carey
,
J.
,
Munro
,
M.
, and
Fahim
,
A.
,
2005
,
“Regression-Based Model for Elastic Constants of 2D Braided/Woven Open Mesh Angle-Ply Composites,”
Polym. Compos.
,
26
(
2
), pp.
152
164
.10.1002/pc.20092
5.
Mertiny
,
P.
, and
Ellyin
,
F.
,
2002
,
“Influence of the Filament Winding Tension on Physical and Mechanical Properties of Reinforced Composites,”
Composites, Part A
,
33
(
12
), pp.
1615
1622
.10.1016/S1359-835X(02)00209-9
6.
Mertiny
,
P.
, and
Ellyin
,
F.
,
2001
, “
Selection of Optimal Processing Parameters in Filament Winding
,”
International SAMPE Technical Conference
, Vol. 33, pp.
1084
1095
.
7.
Miracle, D. B., and Donaldson, S. L. (Eds.),
1987
,
Engineering Materialös Handbook
,
ASM International, Metals Park
,
OH
, p.
508
.
8.
Carvalho
,
J. D.
,
Lossie
,
M.
,
Vandepitte
,
D.
, and
Van Brussel
,
H.
,
1995
, “
Optimization of Filament-Wound Parts Based on Non-Geodesic Winding
,”
Compos. Manuf.
,
6
, pp.
79
84
.10.1016/0956-7143(95)99647-B
9.
Lekhnitskii
,
S. G.
,
1968
,
Anisotropic Plates
,
Gordon and Breach Science Publishers
,
London, United Kingdom
.
10.
Soden
,
P. D.
,
Kitching
,
R.
, and
Tse
,
P. C.
,
1989
, “Experimental Failure Stresses for ±55 deg Filament Wound Glass Fiber Reinforced Plastic Tubes Under Biaxial Loads,”
Composites
,
20
(
2
), pp.
125
135
.10.1016/0010-4361(89)90640-X
11.
Onder
,
A.
,
Sayman
,
O.
,
Dogan
,
T.
, and
Tarakcioglu
,
N.
,
2009
, “
Burst Failure Load of Composite Pressure Vessels,”
Compos. Struct.
,
89
(
1
), pp.
159
166
.10.1016/j.compstruct.2008.06.021
12.
Srikanth
,
L.
, and
Rao
,
R. M. V. G. K.
,
2011
, “
Concurrent Studies on Braided and Filament Wound Carbon Fiber Composites—A Comparative Appraisal
,”
J. Reinf. Plast. Compos.
,
30
(
16
), pp.
1359
1365
.10.1177/0731684411425976
13.
Eckold
,
G. C.
,
Leadbetter
,
D.
,
Soden
,
P. D.
, and
Griggs
,
P. R.
,
1978
, “Lamination Theory in the Prediction of Failure Envelopes for Filament Wound Materials Subjected to Biaxial Loading,”
Composites
,
9
(
4
), pp.
243
246
.10.1016/0010-4361(78)90176-3
14.
Gargiulo
,
C.
,
Marchetti
,
M.
, and
Rizzo
,
A.
,
1996
, “Prediction of Failure Envelopes of Composite Tubes Subjected to Biaxial Loadings,”
Acta Astronaut.
,
39
(
5
), pp.
355
368
.10.1016/S0094-5765(96)00081-1
15.
Hossain
,
R.
,
Mertiny
,
P.
, and
Carey
,
J. P.
,
2012
, “
Determination of Fiber Orientation Along the Length of Complex Composite Structures Subjected to Internal Pressure and Axial Loading
,”
Proceedings of the ASME 2012 Pressure Vessels & Piping Division Conference PVP2012
, Toronto, ON, Canada, July 15–19, Paper No. PVP2012-78237.
16.
Hossain
,
R.
,
Carey
,
J.
, and
Mertiny
,
P.
,
2011
, “
Complex-Shaped Mandrel Modeling for Braiding and Filament-Winding
,” 23rd Canadian Congress of Applied Mechanics, Paper No. 124.
17.
Kaw
,
A. K.
,
2006
,
Mechanics of Composite Materials
,
CRC Press
,
Boca Raton, FL
.
18.
Military Handbook
,
2002
, MIL-HDBK-17-2F: Composite Materials Handbook, Volume 2 - Polymer Matrix Composites Materials Properties, U.S. Department of Defense.
19.
Tsai
,
S. W.
, and
Wu
,
E. M.
,
1971
,
“A General Theory of Strength for Anisotropic Materials,”
J. Compos. Mater.
,
5
(
1
), pp.
58
80
.10.1177/002199837100500106
20.
Tsai
,
S. W.
, and
Hahn
,
H. T.
1980
,
Introduction to Composite Materials
,
Technomic Publishers
,
Lancaster, PA
.
21.
Agarwal
,
B.
, and
Broutman
,
L. J.
,
1980c
,
Analysis and Performance of Fiber Composites
,
Wiley
,
New York
.
22.
Brunnschweiler
,
D.
,
1954
,
“The Structure and Tensile Properties of Braids,”
J. Text. Inst.
,
45
, pp.
T55
T77
.10.1080/19447025408662631
23.
Jones
,
R. M.
,
1999
,
Mechanics of Composite Materials
, 2nd ed.,
Taylor & Francis Group
,
Philadelphia
, p.
137
.
You do not currently have access to this content.