Momentum variation in two-phase flow generates significant low frequency forces, capable of producing unwanted and destructive vibrations in nuclear or petroleum industries. Two-phase flow-induced forces in piping were previously studied over a range of diameters from 6 mm to 70 mm in different piping element geometries, such as elbows, U-bends, and tees. Dimensionless models were then developed to estimate the rms forces and generate vibration excitation force spectra. It was found that slug flow generates the largest forces due to the large momentum variation between Taylor bubbles and slugs. The present study was conducted with a 52 mm diameter U-bend tube carrying a vertical upward flow. Two-phase flow-induced forces were measured. In addition, two-phase flow parameters, such as the local void fraction, bubble size and velocity, and slug frequency were studied to understand the relationship between the force spectra and the two-phase flow patterns. A new two-phase flow pattern map, based on existing transition models and validated using our own local void fraction measurements and force spectra, is proposed. This paper also presents a comparison of the present dimensionless forces with those of previous studies, thus covers a wide range of geometries and Weber numbers. Finally, a dimensionless spectrum is proposed to correlate forces with large momentum variations observed for certain flow patterns.

References

References
1.
Cargnelutti
,
M. F.
,
Belfroid
,
S. P. C.
, and
Schiferli
,
W.
,
2010
, “
Two-Phase Flow-Induced Forces on Bends in Small Scale Tubes
,”
ASME J. Pressure Vessel Technol.
,
132
(
4
), p.
041305
.10.1115/1.4001523
2.
Tay
,
B. L.
, and
Thorpe
,
R. B.
,
2004
, “
Effects of Liquid Physical Properties on the Forces Acting on a Pipe Bend in Gas-Liquid Slug Flow
,”
Chem. Eng. Res. Des.
,
82
(
1
), pp.
344
356
.10.1205/026387604322870453
3.
Yih
,
T. S.
, and
Griffith
,
P.
,
1970
, “
Unsteady Momentum Fluxes in Two-Phase Flow and the Vibration of Nuclear System Components
,” Argonne National Laboratory, Argonne, IL, Technical Report No. ANL-7685.
4.
Riverin
,
J.-L.
,
De Langre
,
E.
, and
Pettigrew
,
M. J.
,
2006
, “
Fluctuating Forces Caused by Internal Two-Phase Flow on Bends and Tees
,”
J. Sound Vib.
,
298
(
1
), pp.
1088
1098
.10.1016/j.jsv.2006.06.039
5.
Riverin
,
J.-L.
, and
Pettigrew
,
M. J.
,
2007
, “
Vibration Excitation Forces Due to Two-Phase Flow in Piping Elements
,”
ASME J. Pressure Vessel Technol.
,
129
(
1
), pp.
7
13
.10.1115/1.2388994
6.
Giraudeau
,
M.
,
Pettigrew
,
M. J.
, and
Mureithi
,
N. W.
,
2011
, “
Two-Phase Flow Excitation Forces on a Vertical U-Bend Tube
,”
Proceedings of the ASME Pressure Vessels and Piping Conference
,
Baltimore, Maryland
, Paper No. 57103.
7.
Taitel
,
Y.
,
Bornea
,
D.
, and
Dukler
,
A. E.
,
1980
, “
Modelling Flow Pattern Transitions for Steady Upward Gas-Liquid Flow in Vertical Tubes
,”
AIChE J.
,
26
(
1
), pp.
345
354
.10.1002/aic.690260304
8.
Mcquillan
,
K. W.
, and
Whalley
,
P. B.
,
1985
, “
Flow Patterns in Vertical Two-Phase Flow
,”
Int. J. Multiphase Flow
,
11
(
1
), pp.
161
175
.10.1016/0301-9322(85)90043-6
9.
Jayanti
,
S.
, and
Hewitt
,
G. F.
,
1992
, “
Prediction of the Slug-to-Churn Flow Transition in Vertical Two-Phase Flow
,”
Int. J. Multiphase Flow
,
18
(
1
), pp.
847
860
.10.1016/0301-9322(92)90063-M
10.
Costigan
,
G.
, and
Whalley
,
P. B.
,
1996
, “
Dynamic Void Fraction Measurements in Vertical Air-Water Flows
,” Oxford University, Technical Report No. OUEL 2093/96.
11.
Wang
,
Y. W.
,
Pei
,
B. S.
, and
Lin
,
W. K.
,
1991
, “
Verification of Using a Single Void Fraction Sensor to Identify 2-Phase Flow Patterns
,”
Nucl. Technol.
,
95
(
1
), pp.
87
94
.
12.
Costigan
,
G.
, and
Whalley
,
P. B.
,
1997
, “
Slug Flow Regime Identification From Dynamic Void Fraction Measurements in Vertical Air-Water Flows
,”
Int. J. Multiphase Flow
,
23
(
1
), pp.
263
282
.10.1016/S0301-9322(96)00050-X
13.
Brauner
,
N.
, and
Barnea
,
D.
,
1986
, “
Slug/Churn Transition in Upward Gas-Liquid Flow
,”
Chem. Eng. Sci.
,
41
(
1
), pp.
159
163
.10.1016/0009-2509(86)85209-5
14.
Mishima
,
K. M.
, and
Ishii
,
M.
,
1984
, “
Flow Regime Transition Criteria for Upward Two-Phase Flow in Vertical Tubes
,”
Int. J. Heat Mass Transfer
,
27
(
1
), pp.
723
737
.10.1016/0017-9310(84)90142-X
15.
Chen
,
X. T.
, and
Brill
,
J. P.
,
1997
, “
Slug to Churn Transition in Upward Vertical Two-Phase Flow
,”
Chem. Eng. Sci.
,
52
(
1
), pp.
4269
4272
.10.1016/S0009-2509(97)00178-4
16.
Nicklin
,
D. J.
, and
Davidson
,
J. F.
,
1962
, “
The Onset of Instability in Two-Phase Slug Flow
,”
Proceedings of the Symposium on Two-phase Fluid Flow, Institution of Mechanical Engineers
,
London
, Paper No. 4.
17.
Brotz
,
W.
,
1954
, “
Über Die Vorausberechnung Der Absorptionsgeschwindigkeit Von Gasen in Strömenden Flüssigkeitsschichten
,”
Chem. Eng. Technol.
,
26
(
1
), p.
470
.
18.
Fulford
,
G. D.
,
1964
, “
The Flow Liquids in Thin Films
,”
Adv. Chem. Eng.
,
5
(
1
), pp.
151
236
.10.1016/S0065-2377(08)60008-3
19.
Nusselt
,
W.
,
1916
, “
Die Oberflaechenkondensation Des Was Serdampfes (the Surface Condensation of Water Vapor)
,”
Z. Ver. Dtsch. Ing.
,
60
(
1
), pp.
541
575
.
20.
Jayanti
,
S.
,
Hewitt
,
G. F.
,
Low
,
D. E. F.
, and
Hervieu
,
E.
,
1993
, “
Observation of Flooding in the Taylor Bubble of Cocurrent Upwards Slug Flow
,”
Int. J. Multiphase Flow
,
19
(
3
), pp.
531
534
.10.1016/0301-9322(93)90066-4
21.
Taylor
,
C. E.
,
1992
, “
Random Excitation Forces in Tube Arrays Subjected to Two-Phase Cross Flow
,”
Proceedings of the ASME Winter Annual Meeting, FSI/FIV in Cylinder Arrays in Cross-Flow, Heat Transfer Division
,
Anaheim, CA
, Vol. 230, pp.
89
107
.
22.
Morris
,
D.
,
Teyssedou
,
A.
,
Lapierre
,
J.
, and
Tapucu
,
A.
,
1987
, “
Optical Fiber Probe to Measure Local Void Fraction Profiles
,”
Appl. Opt.
,
26
(
1
), pp.
4660
4664
.10.1364/AO.26.004660
23.
Hamad
,
F. A.
,
Pierscionek
,
B. K.
, and
Bruun
,
H. H.
,
2000
, “
A Dual Optical Probe for Volume Fraction, Drop Velocity and Drop Size Measurements in Liquid-Liquid Two-Phase Flow
,”
Meas. Sci. Technol.
,
11
(
9
), pp.
1307
1318
.10.1088/0957-0233/11/9/308
24.
Dukler
,
A. E.
,
Maron
,
D. M.
, and
Brauner
,
N.
,
1985
, “
Physical Model for Predicting the Minimum Stable Slug Length
,”
Chem. Eng. Sci.
,
40
(
1
), pp.
1379
1385
.10.1016/0009-2509(85)80077-4
25.
Barnea
,
D.
,
Luninski
,
Y.
, and
Taitel
,
Y.
,
1983
, “
Flow Pattern in Horizontal and Vertical Two-Phase Flow in Small Diameter Pipes
,”
Can. J. Chem. Eng.
,
61
(
1
), pp.
617
620
.10.1002/cjce.5450610501
26.
Brodkey
,
R. S.
,
1967
,
The Phenomena of Fluid Motions, Chemical Engineering
,
Addison Wesley
,
Reading, Mass
.
27.
Weisman
,
J.
,
Duncan
,
D.
,
Gibson
,
J.
, and
Crawford
,
T.
,
1979
, “
Effects of Fluid Properties and Pipe Diameter on Two-Phase Flow Patterns in Horizontal Lines
,”
Int. J. Multiphase Flow
,
5
(
6
), pp.
437
462
.10.1016/0301-9322(79)90031-4
28.
Onoda
,
G. Y.
, and
Liniger
,
E. G.
,
1990
, “
Random Loose Packings of Uniform Spheres and the Dilatancy Onset
,”
Phys. Rev. Lett.
,
64
(
22
), pp.
2727
2730
.10.1103/PhysRevLett.64.2727
29.
Legius
,
H. J. W. M.
,
Van Den Akker
,
H. E. A.
, and
Narumo
,
T.
,
1997
, “
Measurements on Wave Propagation and Bubble and Slug Velocities in Cocurrent Upward Two-Phase Flow
,”
Exp. Therm. Fluid Sci.
,
15
(
1
), pp.
267
278
.10.1016/S0894-1777(97)00012-5
30.
Barnea
,
E.
, and
Mizrahi
,
J.
,
1973
, “
A Generalized Approach of the Fluid Dynamics of Particulate Systems I: General Correlation for Fluidization and Sedimentation in Solid Multiparticulate Systems
,”
Chem. Eng. J.
,
5
(
1
), pp.
171
189
.10.1016/0300-9467(73)80008-5
31.
Park
,
J. W.
,
Drew
,
D. A.
, and
Lahey
,
R. T.
, Jr.
,
1994
, “
Measurement of Void Waves in Bubbly Two-Phase Flows
,”
Nucl. Eng. Des.
,
149
(
1
), pp.
37
52
.10.1016/0029-5493(94)90273-9
32.
Sun
,
B.
,
Yan
,
D.
, and
Zhang
,
Z.
,
1999
, “
The Instability of Void Fraction Waves in Vertical Gas-Liquid Two-Phase Flow
,”
Commun. Nonlinear Sci. Numer. Simul.
,
4
(
1
), pp.
181
186
.10.1016/S1007-5704(99)90002-3
33.
Park
,
J. W.
,
Drew
,
D. A.
, and
Lahey
,
R. T.
, Jr.
,
1998
, “
The Analysis of Void Wave Propagation in Adiabatic Monodispersed Bubbly Two-Phase Flows Using an Ensemble-Averaged Two-Fluid Model
,”
Int. J. Multiphase Flow
,
24
(
1
), pp.
1205
1244
.10.1016/S0301-9322(98)00020-2
34.
Matuszkiewicz
,
A.
,
Flamand
,
J. C.
, and
Boure
,
J. A.
,
1987
, “
Bubble-Slug Flow Pattern Transition and Instabilities of Void Fraction Waves
,”
Int. J. Multiphase Flow
,
13
(
1
), pp.
199
217
.10.1016/0301-9322(87)90029-2
35.
Heywood
,
N. I.
, and
Richardson
,
J. F.
,
1979
, “
Slug Flow of Air-Water Mixtures in a Horizontal Pipe: Determination of Liquid Holdup by Gamma-Ray Absorption
,”
Chem. Eng. Sci.
,
34
(
1
), pp.
17
30
.10.1016/0009-2509(79)85174-X
36.
De Langre
,
E.
, and
Villard
,
B.
,
1998
, “
An Upper Bound on Random Buffeting Forces Caused by Two-Phase Flows across Tubes
,”
J. Fluids Struct.
,
12
(
1
), pp.
1005
1023
.10.1006/jfls.1998.0180
You do not currently have access to this content.