An experimental study was conducted to investigate the mechanism of damping in tube arrays subjected to two-phase cross-flow, mainly focusing on the influence of void fraction and flow regime. The model tube bundle had a parallel-triangular configuration, with a pitch ratio of 1.49. The two-phase flow loop used in this research utilized Refrigerant 11 as the working fluid, which better models steam-water than air-water mixtures in terms of vapour-liquid mass ratio as well as permitting phase changes due to pressure fluctuations. The void fraction was measured using a gamma densitometer, introducing an improvement over the homogeneous equilibrium model (HEM). Three different damping measurement methodologies were implemented and compared in order to obtain a more reliable damping estimate: the traditionally used half-power bandwidth, the logarithmic decrement and an exponential fitting to the tube decay response. The experiments showed that the half-power bandwidth produces higher damping values than the other two methods, due to the tube frequency shifting triggered by fluctuations in the added mass and coupling between the tubes, which depend on void fraction and flow regime. The exponential fitting proved to be the more consistent and reliable approach to estimating damping. A dimensional analysis was carried out to investigate the relationship between damping and two-phase flow related parameters. As a result, the inclusion of surface tension in the form of the capillary number appears to be useful when combined with the two-phase component of the damping ratio (interfacial damping). A strong dependence of damping on flow regime was observed when plotting the interfacial damping versus the void fraction, introducing an improvement over the previous results obtained by normalizing the two-phase damping, which does not exhibit this behavior.

References

References
1.
Pettigrew
,
M. J.
,
Tromp
,
J. H.
,
Taylor
,
C. E.
, and
Kim
,
B. S.
,
1989
, “
Vibration of Tube Bundles in Two-Phase Cross-Flow—Part 11: Fluidelastic Instability
,”
ASME J. Pressure Vessel Technol.
,
11
, pp.
478
487
.
2.
Pettigrew
,
M. J.
, and
Taylor
,
C. E.
,
1994
, “
Two-Phase Flow-Induced Vibration: An Overview
,”
ASME J. Pressure Vessel Technol.
116
, pp.
233
253
.10.1115/1.2929583
3.
Pettigrew
,
M. J.
,
Taylor
,
C. E.
, and
Kim
,
B. S.
,
1989
, “
Vibration of Tube Bundles in Two-Phase Cross Flow—Part 1: Hydrodynamic Mass and Damping
,”
ASME J. Pressure Vessel Technol.
,
111
, pp.
466
477
.
4.
Hassan
,
M. A.
,
Weaver
,
D. S.
, and
Dokainish
,
M. A.
,
2002
, “
A Simulation of the Turbulence Response of Heat Exchanger Tubes in Lattice-Bar Supports
,”
J. Fluids Struct.
,
16
(
8
), pp.
1145
1176
.10.1006/jfls.2002.0468
5.
Hassan
,
M. A.
,
Weaver
,
D. S.
, and
Dokainish
,
M. A.
,
2005
, “
A New Tube/Support Impact Model for Heat Exchanger Tubes
,”
J. Fluids Struct.
,
21
, pp.
561
577
.10.1016/j.jfluidstructs.2005.07.016
6.
Weaver
,
D. S.
, and
El-Kashlan
,
M.
,
1981
, “
The Effect of Damping and Tube Mass Ratio on the Stability of a Tube Bank
,”
J. Sound Vib.
,
76
(
2
), pp.
283
294
.10.1016/0022-460X(81)90355-2
7.
Blevins
,
R. D.
,
1979
, “
Fluid Damping and the Whirling Instability of Tube Arrays
,”
3rd National Congress of Pressure Vessel and Piping Technology ASME
,
San Francisco
.
8.
Price
,
S. J.
,
1995
, “
A Review of the Theoretical Models for Fluidelastic Instability of Cylinder Arrays in Cross-Flow
,”
J. Fluids Struct.
,
9
, pp.
463
518
.10.1006/jfls.1995.1028
9.
Carlucci
,
L. N.
,
1980
, “
Damping and Hydrodynamic Mass of a Cylinder in Simulated Two-Phase Flow
,”
J. Mech. Des.
,
102
, pp.
597
602
.10.1115/1.3254791
10.
Carlucci
,
L. N.
, and
Brown
,
J. D.
,
1983
, “
Experimental Studies of Damping and Hydrodynamic Mass of a Cylinder in Confined Two-Phase Flow
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
,
105
, pp.
83
89
.10.1115/1.3269073
11.
Rogers
,
R. G.
,
Taylor
,
C. E.
, and
Pettigrew
,
M. J.
,
1984
, “
Fluid Effects on Multi-Span Heat Exchanger Tube Vibration
,” ASME Pressure Vessel and Piping Technology No. H00316, San Antonio, TX.
12.
Pettigrew
,
M. J.
, and
Knowles
,
G. D.
,
1997
, “
Some Aspects of Heat-Exchanger Tube Damping in Two-Phase Mixtures
,”
J. Fluids Struct.
,
11
, pp.
929
945
.10.1006/jfls.1997.0109
13.
Hara
,
F.
,
1987
, “
Vibrations of Circular Cylindrical Structures subjects to Two-Phase Cross-Flows
,”
JSME Int. J.
,
30
(
263
), pp.
711
722
.10.1299/jsme1987.30.711
14.
Axisa
,
F.
,
Wullschleger
,
M.
, and
Villard
,
B.
,
1988
, “
Two-Phase Cross-Flow Damping in Tube Arrays
,”
ASME PVP Conference, ASME Publications
,
Pittsburgh
, Vol. 133, pp.
9
15
.
15.
Nakamura
,
T.
,
Hirota
,
K.
,
Wanatabe
,
Y.
,
Mureithi
,
N. W.
,
Kusanabe
,
T.
, and
Takamatsu
,
H.
,
2002
, “
Dynamics of an In-Line Tube Array Subjected to Steam-Water Cross-Flow—Part 1: Two-Phase Damping and Added Mass
,”
J. Fluids Struct.
,
16
(
2
), pp.
123
136
.10.1006/jfls.2001.0406
16.
Anscutter
,
F.
,
Béguin
,
C.
,
Ross
,
A.
,
Pettigrew
,
M.
, and
Mureithi
,
N.
,
2006
, “
Two-Phase Damping and Interface Surface Area in Tubes With Internal Flow
,”
ASME PVP Conference PVP
,
Vancouver, BC, Canada
, Vol. 4A, Paper No. 93878.
17.
Pettigrew
,
M. J.
,
Taylor
,
C. E.
,
Fisher
,
N. J.
,
Yetisir
,
M.
, and
Smith
,
B. A. W.
,
1998
, “
Flow-Induced Vibration: Recent Findings and Open Questions
,”
Nucl. Eng. Des.
,
185
, pp.
249
276
.10.1016/S0029-5493(98)00238-6
18.
Pettigrew
,
M. J.
, and
Taylor
,
C. E.
,
2003
, “
Vibration Analysis of Shell-and-Tube Heat Exchangers: An Overview—Part 1: Flow, Damping, Fluidelastic Instability
,”
J. Fluids Struct.
,
18
, pp.
469
483
.10.1016/j.jfluidstructs.2003.08.007
19.
Pettigrew
,
M. J.
, and
Taylor
,
C. E.
,
2004
, “
Damping of Heat Exchanger Tubes in Two-Phase Flow: Review and Design Guidelines
,”
ASME J. Pressure Vessel Technol.
,
126
, pp.
523
533
.10.1115/1.1806443
20.
Baj
,
F.
, and
de. Langre
,
E.
,
2003
, “
Scaling of Damping Induced by Bubbly Flow Across Tubes
,”
J. Fluids Struct.
,
17
, pp.
351
364
.10.1016/S0889-9746(02)00142-1
21.
Collier
,
J. G.
, and
Thome
,
J. R.
,
1996
,
Convective Boiling and Condensation
,
3rd ed.
,
Clarendon
,
Oxford
.
22.
Janzen
,
V. P.
,
Han
,
Y.
,
Smith
,
B. A.
, and
Fluit
,
S. M.
,
2005
, “
Vibration Damping of Stabilized Steam Generator Tubes
,”
ASME PVP Conference
,
Denver
, Paper No. 71666.
23.
Chandler
,
C.
,
2005
, “
Methods of Determining a Damping Ratio From a Single Impact Test
,”
ASME PVP Conference
,
Denver
, Paper No. 71041.
24.
Feenstra
,
P. A.
,
Weaver
,
D. S.
, and
Judd
,
R. L.
,
2002
, “
Modelling Two-Phase Flow Excited Damping and Fluidelastic Instability in Tube Arrays
,”
J. Fluids Struct.
,
16
(
6
), pp.
811
840
.10.1006/jfls.2002.0442
25.
Feentra
,
P. A.
,
Weaver
,
D. S.
, and
Nakamura
,
T.
,
2003
, “
Vortex Shedding and Fluidelastic Instability in a Normal Square Tube Array Excited by Two-Phase Cross-Flow
,”
J. Fluids Struct.
17
, pp.
793
811
.10.1016/S0889-9746(03)00024-0
26.
Moran
,
J. E.
,
Weaver
,
D. S.
, and
Feenstra
,
P. A.
,
2005
, “
A New Method for Measuring Damping in Two-Phase Flows
,”
20th Canadian Congress of Applied Mechanics (CANCAM)
,
Montreal, Canada
.
27.
Chan
,
A. M.
, and
Banerjee
,
S.
,
1981
, “
Design Aspects of Gamma Densitometers for Void Fraction Measurements in Small Scale Two-Phase Flows
,”
Nucl. Instrum. Methods
,
190
, pp.
135
148
.10.1016/0029-554X(81)90214-7
28.
Feenstra
,
P. A.
,
Weaver
,
D. S.
, and
Judd
,
R. L.
,
2000
, “
An Improved Void Fraction Model for Two-Phase Cross Flow in Horizontal Tube Bundles
,”
Int J. Multiphase Flow
,
26
, pp.
1851
1873
.10.1016/S0301-9322(99)00118-4
29.
Ulbrich
,
R.
, and
Mewes
,
D.
,
1994
, “
Vertical, Upward Gas-Liquid Two-Phase Flow Across a Tube Bundle
,”
Int. J. Multiphase Flow
,
20
(
2
), pp.
249
272
.10.1016/0301-9322(94)90081-7
30.
de Langre
,
E.
,
2006
, private communication.
31.
Pettigrew
,
M. J.
,
Taylor
,
C. E.
,
Jong
,
J. H.
, and
Currie
,
I. G.
,
1995
, “
Vibration of Tube Bundles in Two-Phase Freon Cross-Flow
,”
ASME J. Pressure Vessel Technol.
,
117
, pp.
321
329
.10.1115/1.2842130
32.
Consolini
,
L.
,
Robinson
,
D.
, and
Thome
,
J. R.
,
2006
, “
Void Fraction and Two-Phase Pressure Drops for Evaporating Flow Over Horizontal Tube Bundles
,”
Heat Transfer Eng.
,
27
(
3
), pp.
5
21
.10.1080/01457630500453832
33.
Cleveland
,
W. S.
,
1994
,
The Elements of Graphing Data
, revised Edition,
Hobart Press
,
Summit, NJ
.
You do not currently have access to this content.