A new lifetime criterion for withdrawal of turbine components from service is developed in this paper based on finite element (FE) analysis and experimental results. Finite element analysis is used to determine stresses in the turbine component during the imposed cyclic loads and analytically predict a fatigue life. Based on the finite element analysis, the critical section is then subjected to a creep-fatigue test, using three groups of full scale turbine components, attached to an actual turbine disc conducted at 750 °C. The experimental data and life prediction results were in good agreement. The creep-fatigue life of this type of turbine component at a 99.87% survival rate is 30 h.

References

References
1.
Harrison
,
G. F.
,
Tranter
,
P. H.
,
Shepherd
,
D. P.
,
Ward
,
T.
,
2004
, “
Application of Multi-Scale Modeling in Aeroengine Component Life Assessment
,”
Mater. Sci. Eng. A
,
365
(
1–2
), pp.
247
256
.10.1016/j.msea.2003.09.034
2.
Pineau
,
A.
, and
Antolovich
,
S. D.
,
2009
, “
High Temperature Fatigue of Nickel-Base Superalloys—A Review With Special Emphasis on Deformation Models and Oxidation
,”
Eng. Failure Anal.
,
16
(
8
), pp.
2668
2697
.10.1016/j.engfailanal.2009.01.010
3.
Kwofie
,
S.
, and
Chandler
,
H. D.
,
2007
, “
Fatigue Life Prediction Under Conditions Where Cyclic Creep-Fatigue Interaction Occurs
,”
Int. J. Fatigue
,
29
(
12
), pp.
2117
2124
.10.1016/j.ijfatigue.2007.01.022
4.
Hu
,
D. Y.
, and
Wang
,
R. Q.
,
2009
, “
Experimental Study on Creep–Fatigue Interaction Behavior of GH4133B Superalloy
,”
Mater. Sci. Eng. A
,
515
(
1-2
), pp.
183
189
.10.1016/j.msea.2009.02.049
5.
Oldham
,
J.
, and
Hanna
,
J. A.
,
2011
, “
A Numerical Investigation of Creep-Fatigue Life Prediction Utilizing Hysteresis Energy as a Damage Parameter
,”
Int. J. Pressure Vessels Piping
,
88
(
4
), pp.
149
157
.10.1016/j.ijpvp.2011.02.001
6.
Silveira
,
E.
,
Atxaga
,
G.
, and
Irisarri
,
A. M.
,
2009
, “
Influence of the Level of Damage on the High Temperature Fatigue Life of an Aircraft Turbine Disc
,”
Eng. Failure Anal.
,
16
(
2
), pp.
578
584
.10.1016/j.engfailanal.2008.02.012
7.
Issler
,
S.
, and
Roos
,
E.
,
2003
, “
Numerical and Experimental Investigations Into Life Assessment of Blade-Disc Connections of Gas Turbines
,”
Nucl. Eng. Des.
,
226
, pp.
155
164
.10.1016/S0029-5493(03)00192-4
8.
Wang
,
R. Q.
,
Cho
,
C. D.
, and
Nie
,
J. X.
,
2005
, “
Combined Fatigue Life Test and Extrapolation of Turbine Disk Mortise at Elevated Temperature
,”
Trans. ASME J. Eng. Gas Turbine Power
,
127
(
4
), pp.
863
868
.10.1115/1.1926314
9.
Meguid
,
S. A.
,
Kanth
,
P. S.
, and
Czekanski
,
A.
,
2000
, “
Finite Element Analysis of Fir-Tree Region in Turbine Discs
,”
Finite Elements Anal. Des.
,
35
(
4
), pp.
305
317
.10.1016/S0168-874X(99)00072-4
10.
Yan
,
M. N.
,
2002
,
Editorial Committee of Handbook of Chinese Aviation Material Handbook. Chinese Aviation Material Handbook
,
China Standard Press
,
Beijing
.
11.
Hou
,
G. C.
,
2007
, “
A Clamp for Turbine Blade-Disc in Aeroengine
,” China Patent No. 200520118465.
12.
Wang
,
R. Q.
,
Hou
,
G. C.
,
Hu
,
D. Y.
,
Wang
,
L.
,
Cao
,
J.
, and
Yang
,
Z. Z.
,
2005
, “
Life Experiments on High Pressure Turbine Components of a Turbofan Aeroengine
,” Scientific and Technical Report of Beihang University, Report No. BH-B200501.
You do not currently have access to this content.