A new lifetime criterion for withdrawal of turbine components from service is developed in this paper based on finite element (FE) analysis and experimental results. Finite element analysis is used to determine stresses in the turbine component during the imposed cyclic loads and analytically predict a fatigue life. Based on the finite element analysis, the critical section is then subjected to a creep-fatigue test, using three groups of full scale turbine components, attached to an actual turbine disc conducted at 750 °C. The experimental data and life prediction results were in good agreement. The creep-fatigue life of this type of turbine component at a 99.87% survival rate is 30 h.
Issue Section:
Technical Briefs
References
1.
Harrison
, G. F.
, Tranter
, P. H.
, Shepherd
, D. P.
, Ward
, T.
, 2004
, “Application of Multi-Scale Modeling in Aeroengine Component Life Assessment
,” Mater. Sci. Eng. A
, 365
(1–2
), pp. 247
–256
.10.1016/j.msea.2003.09.0342.
Pineau
, A.
, and Antolovich
, S. D.
, 2009
, “High Temperature Fatigue of Nickel-Base Superalloys—A Review With Special Emphasis on Deformation Models and Oxidation
,” Eng. Failure Anal.
, 16
(8
), pp. 2668
–2697
.10.1016/j.engfailanal.2009.01.0103.
Kwofie
, S.
, and Chandler
, H. D.
, 2007
, “Fatigue Life Prediction Under Conditions Where Cyclic Creep-Fatigue Interaction Occurs
,” Int. J. Fatigue
, 29
(12
), pp. 2117
–2124
.10.1016/j.ijfatigue.2007.01.0224.
Hu
, D. Y.
, and Wang
, R. Q.
, 2009
, “Experimental Study on Creep–Fatigue Interaction Behavior of GH4133B Superalloy
,” Mater. Sci. Eng. A
, 515
(1-2
), pp. 183
–189
.10.1016/j.msea.2009.02.0495.
Oldham
, J.
, and Hanna
, J. A.
, 2011
, “A Numerical Investigation of Creep-Fatigue Life Prediction Utilizing Hysteresis Energy as a Damage Parameter
,” Int. J. Pressure Vessels Piping
, 88
(4
), pp. 149
–157
.10.1016/j.ijpvp.2011.02.0016.
Silveira
, E.
, Atxaga
, G.
, and Irisarri
, A. M.
, 2009
, “Influence of the Level of Damage on the High Temperature Fatigue Life of an Aircraft Turbine Disc
,” Eng. Failure Anal.
, 16
(2
), pp. 578
–584
.10.1016/j.engfailanal.2008.02.0127.
Issler
, S.
, and Roos
, E.
, 2003
, “Numerical and Experimental Investigations Into Life Assessment of Blade-Disc Connections of Gas Turbines
,” Nucl. Eng. Des.
, 226
, pp. 155
–164
.10.1016/S0029-5493(03)00192-48.
Wang
, R. Q.
, Cho
, C. D.
, and Nie
, J. X.
, 2005
, “Combined Fatigue Life Test and Extrapolation of Turbine Disk Mortise at Elevated Temperature
,” Trans. ASME J. Eng. Gas Turbine Power
, 127
(4
), pp. 863
–868
.10.1115/1.19263149.
Meguid
, S. A.
, Kanth
, P. S.
, and Czekanski
, A.
, 2000
, “Finite Element Analysis of Fir-Tree Region in Turbine Discs
,” Finite Elements Anal. Des.
, 35
(4
), pp. 305
–317
.10.1016/S0168-874X(99)00072-410.
Yan
, M. N.
, 2002
, Editorial Committee of Handbook of Chinese Aviation Material Handbook. Chinese Aviation Material Handbook
, China Standard Press
, Beijing
.11.
Hou
, G. C.
, 2007
, “A Clamp for Turbine Blade-Disc in Aeroengine
,” China Patent No. 200520118465.12.
Wang
, R. Q.
, Hou
, G. C.
, Hu
, D. Y.
, Wang
, L.
, Cao
, J.
, and Yang
, Z. Z.
, 2005
, “Life Experiments on High Pressure Turbine Components of a Turbofan Aeroengine
,” Scientific and Technical Report of Beihang University, Report No. BH-B200501.Copyright © 2013 by ASME
You do not currently have access to this content.