The experimentally obtained fatigue limit of high strength steel is generally a value reduced by inherent flaws, and such a value does not characterize the resistance of the matrix of high strength steel to cyclic loading. To investigate the fatigue limit of the matrix, fatigue tests of 17-4PH stainless steel were performed. 17-4PH stainless steel showed a distinct dual-stage S-N curve: one stage corresponding to high stress where crack initiated at the surface and another stage corresponding to low stress where crack initiated from the subsurface inclusion (Al2O3). Based on small crack mechanics, a model was proposed to predict the fatigue limit of the matrix of 17-4PH stainless steel and its validity has been discussed.
Issue Section:
Materials and Fabrication
References
1.
Hayashi
, R.
, 2002
, “High Pressure in Bioscience and Biotechnology: Pure Science Encompassed in Pursuit of Value
,” Biochim. Biophys. Acta
, 1595
, pp. 397
–399
.10.1016/S0167-4838(01)00362-42.
Balny
, C.
, 2006
, “What Lies in the Future of High-Pressure Bioscience
,” Biochim. Biophys. Acta
, 1764
, pp.632
–639
.10.1016/j.bbapap.2005.10.0043.
Aertsen
, A.
, Meersman
, F.
, Hendrickx
, M. E. G.
, Vogel
, R. F.
, and Michiels
, C. W.
, 2009
, “Biotechnology Under High Pressure: Applications and Implications
,” Trends Biotechnol.
, 27
, pp. 434
–411
.10.1016/j.tibtech.2009.04.0014.
Smith
, W. F.
, 1993
, “Structure and Properties of Engineering Alloys
,” 2nd ed., McGraw-Hill
, New York
.5.
Bressan
, J. D.
, Daros
, D. P.
, Sokolowski
, A.
, Mesquita
, R. A.
, and Barbosa
, C. A.
, 2008
, “Influence of Hardness on the Wear Resistance of 17-4 PH Stainless Steel Evaluated by the Pin-on-Disc Testing
,” J. Mater. Process. Technol.
, 205
, pp. 353
–359
.10.1016/j.jmatprotec.2007.11.2516.
Mirzadeh
, H.
, and Najafizadeh
, A.
, 2009
, “Aging Kinetics of 17-4 PH Stainless Steel
,” Mater. Chem. Phys.
, 116
, pp. 119
–124
.10.1016/j.matchemphys.2009.02.0497.
Niimi
, M.
, Matsui
, Y.
, Jitsukawa
, S.
, Hoshiya
, T.
, Tsukada
, T.
, Ohmi
, M.
, Mimura
, H.
, Ooka
, N.
, and Hide
, K.
, 1999
, “Properties of Precipitation Hardened Steel Irradiated at 323K in the Japan Materials Testing Reactor
,” J. Nucl. Mater.
, 271–272
, pp. 92
–96
.10.1016/S0022-3115(98)00699-08.
Ma
, F. Y.
, and Wang
, W. H.
, 2006
, “Fatigue Crack Propagation Estimation of SUS630 Shaft Based on Fracture Surface Analysis Under Pitting Corrosion Condition
,” Mater. Sci. Eng.
, 430
, pp. 1
–8
.10.1016/j.msea.2006.03.0609.
Raj
, S. V.
, Ghosn
, L. J.
, Lerch
, B. A.
, Hebsur
, M.
, Cosgriff
, L. M.
, and Fedor
, J.
, 2007
, “Mechanical Properties of 17-4 PH Stainless Steel Foam Panels
,” Mater. Sci. Eng.
, 456
, pp. 305
–316
.10.1016/j.msea.2006.11.14210.
Suresh
, S.
, 1998
, Fatigue of Materials
, 2nd ed., Cambridge
, New York
.11.
Frost
, N. E.
, Marsh
, K. J.
, and Pook
, L. P.
, 1974
, Metal Fatigue
, Clarendon
, Oxford [Eng.]
.12.
Stephens
, R. I.
, Fatemi
A.
, and Stephens
, R. R.
, 2000
, Metal Fatigue in Engineering
, 2nd ed., John Wiley and Sons
, New York, NY.13.
Schijve
, J.
, 2009
, Fatigue of Structures and Materials
, 2nd ed., Springer
, New York
.14.
Murakami
, Y.
, Yokoyama
, N. N.
, and Nagata
, J.
, 2002
, “Mechanism of Fatigue Failure in Ultralong Life Regime
,” Fatigue Fract. Eng. Mater. Struct.
, 25
, pp.735
–746
.10.1046/j.1460-2695.2002.00576.x15.
Liu
, Y. B.
, Yang
, Z. G.
, Li
, Y. D.
, Chen
, S. M.
, Li
, S. X.
, Hui
, W. J.
, and Weng
, Y. O.
, 2009
, “Dependence of Fatigue Strength on Inclusion Size for High-Strength Steels in Very High Cycle Fatigue Regime
,” Mater. Sci. Eng.
, 517
, pp. 180
–184
.10.1016/j.msea.2009.03.05716.
Nakajima
, M.
, Tokaji
, K.
, Itoga
, H.
, and Shimizu
, T.
, 2010
, “Effect of Loading Condition on Very High Cycle Fatigue Behavior in a High Strength Steel
,” Int. J. Fatigue
, 32
, pp. 475
–480
.10.1016/j.ijfatigue.2009.09.00317.
Bathias
, C.
, and Paris
, P. C.
, 2005
, Gigacycle Fatigue in Mechanical Practice
, Marcel Dekker
, New York
.18.
Murakami
, Y.
, 2002
, Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions
, Elsevier
, Oxford
.19.
Sakai
, T.
, Sato
, Y.
, and Oguma
, N.
, 2002
, “Characteristic S-N Properties of High-Carbon-Chromium-Bearing Steel Under Axial Loading in Long-Life Fatigue
,” Fatigue Fract. Eng. Mater. Struct.
, 25
, pp. 765
–773
.10.1046/j.1460-2695.2002.00574.x20.
Shiozawa
, K.
, and Lu
, L.
, 2002
, “Very High-Cycle Fatigue Behavior of Shot-Peened High-Carbon-Chromium Bearing Steel
,” Fatigue Fract. Eng. Mater. Struct.
, 25
, pp. 813
–822
.10.1046/j.1460-2695.2002.00567.x21.
Ochi
, Y.
, Matsumura
, T.
, Masaki
, K.
, and Yoshida
, S.
, 2002
, “High-Cycle Rotating Bending Fatigue Property in Very Long-Life Regime of High-Strength Steels
,” Fatigue Fract. Eng. Mater. Struct.
, 25
, pp. 823
–830
.10.1046/j.1460-2695.2002.00575.x22.
Zhang
, J. M.
, Li
, S. X.
, Yang
, Z. G.
, Li
, G. Y.
, Hui
, W. J.
, and Weng
, Y. Q.
, 2007
, “Influence of Inclusion Size on Fatigue Behavior of High Strength Steels in the Gigacycle Fatigue Regime
,” Int. J. Fatigue
, 29
, pp. 765
–771
.10.1016/j.ijfatigue.2006.06.00423.
Tanaka
, K.
, Nakai
, Y.
, and Yamashita
, M.
, 1981
, “Fatigue Growth Threshold of Small Cracks
,” Int. J. Fracture
, 17
, pp. 519
–533
.24.
Smith
, R. A.
, 1977
, “On the Short Crack Limitations of Fracture Mechanics
,” Int. J. Fracture
, 13
, pp. 717
–720
.10.1007/BF0001730825.
EL Haddad
, M. H.
, Topper
, T. H.
, and Smith
, K. N.
, 1979
, “Prediction of Non Propagating Cracks
,” Eng. Fracture Mech.
, 11
, pp. 573
–584
.10.1016/0013-7944(79)90081-XCopyright © 2013 by ASME
You do not currently have access to this content.