This paper presents the results of the research activities of the subcommittee on hydrogen embrittlement of the Japan Pressure Vessel Research Council (JPVRC). The combined effect of temper embrittlement and hydrogen embrittlement in Cr-Mo steels is discussed. It has been recognized that Cr-Mo steels used widely in the refining and petrochemical industry are quite susceptible to temper embrittlement. Although the synergistic relation between temper embrittlement and hydrogen embrittlement is a matter of major concern, studies regarding this subject are rarely encountered. Task group VIII (TG8) of the JPVRC conducted fracture toughness tests for three kinds of 2.25Cr-1Mo steels and 2.25Cr-1Mo-0.3 V steel. These steels were prepared by subjecting them to normalizing, tempering, and postweld heat treatments (PWHTs) which simulated actual conditions. Some specimens were embrittled by step cooling (Socal-1 treatment). It was found that the threshold for hydrogen-induced fracture was lowered when the specimen was exposed to pressurized hydrogen gas (15 MPa) for 48 h at 450 °C and there was no marked indication of the synergistic action concerning this embrittlement.

References

1.
Zapffe
,
C. A.
, and
Sims
,
C. E.
,
1940
, “
Hydrogen, Flakes and Shatter Cracks
,”
Met. Alloys
, AA00722827
12
, pp.
145
151
.
2.
Troiano
,
A. R.
,
1960
, “
The Role of Hydrogen and Other Interstitials in the Mechanical Behavior of Metals
,”
Trans. ASM
,
52
, pp.
54
80
.
3.
Oriani
,
R. A.
, and
Josephic
,
E. H.
,
1974
, “
Equilibrium Aspects of Hydrogen Induced Cracking of Steels
,”
Acta Metall.
,
22
, pp.
1065
1074
.10.1016/0001-6160(74)90061-3
4.
Birnbaum
,
H. K.
, and
Sofronis
,
P.
,
1994
, “
Hydrogen-Enhanced Localized Plasticity—A Mechanism for Hydrogen Related Fracture
,”
Mater. Sci. Eng., A
,
176
, pp.
191
202
.10.1016/0921-5093(94)90975-X
5.
JPVRC
,
1985
, “
Embrittlement of Pressure Vessel Steels in High Temperature, High Pressure Hydrogen Environment
,” Welding Research Council, BULLETIN 305, June, p.
9
6.
JPVRC
,
1989
, “
Measurement Method and Evaluation of the Hydrogen Embrittlement Threshold Stress Intensity Factor (KIH) for 2.25Cr-1Mo Steel
,” S/C on Hydrogen Embrittlement (TG5) (in Japanese).
7.
JPVRC
,
2001
, “
Evaluation of Hydrogen Embrittlement Susceptibility of Temper Embrittled 2.25Cr-1Mo Steel Operated for Long Term Service
,” S/C on Hydrogen Embrittlement (TG7) (in Japanese).
8.
Yamamoto
,
H.
,
2002
, “
Evaluation of Hydrogen Embrittlement Susceptibility of Temper Embrittled 2.25Cr-1Mo Steel Used for Long Term Service
,”
JPVRC Symposium
, Sanjo Conference Hall, Tokyo, Japan, April 16–17, pp.
113
121
.
9.
Tanaka
,
Y.
,
Aihara
,
S.
,
Konosu
,
S.
,
Hayashi
,
K.
,
Yuga
,
M.
,
Yamamoto
,
H.
,
Ohtsuka
,
N.
, and
Mimura
,
H.
,
2006
, “
Combined Effect of Temper and Hydrogen Embrittlement on Impact Properties of Cr-Mo Steels
,”
Proceedings of ASME
, Paper No. PVP2006-ICPVT11-93360.
10.
Yoshino
,
K.
, and
McMahon
,
C. J.
, Jr
,
1974
, “
The Cooperative Relation Between Temper Embrittlement and Hydrogen Embrittlement in a High Strength Steel
,”
Metall. Trans.
,
5
, pp.
363
370
.10.1007/BF02644103
11.
R6 Revision 4,
2004
,
Assessment of Integrity of Structures Containing Defects
, British Energy Generation Ltd, Glovcester, UK.
12.
ASME
,
2004
, “
Boiler and Pressure Vessel Code, Document IWA-3300
,” American Society of Mechanical Engineers, Philadelphia, PA.
13.
BS7910
,
2005
, “
Guide on Methods for Assessing the Acceptability of Flaws in Fusion Welded Structures
,” British Standards Institution.
14.
API
,
2007
, “
Fitness for Service
,” API 579–1/ASME FFS-1, American Society of Mechanical Engineers, Philadelphia, PA.
15.
FITNET
,
2007
, “
FFS Procedure
,” prepared by European Fitness for Service Thematic Network, Contract No. GIRT-CT-2001–05071, European Framework.
16.
HPI
,
2011
, “
Assessment Procedure for Crack-Like Flaws in Pressure Equipment-Level 2
,” HPISZ101-2 (in Japanese).
17.
Bagdasarian
,
A. J.
,
Bereczky
,
E. L.
,
Ishiguro
,
T.
,
Ishizuka
,
T.
and
Tahara
,
T.
,
1993
, “
Investigation of 26 years old hydroprocessing reactors– A summary report
,” Corrosion93, NACE, Houston, TX.
18.
API
,
2000
, “
Materials and Fabrication Requirements for 2-1/4Cr-1Mo & 3Cr-1Mo Steel Heavy Wall Pressure Vessels for High Temperature, High Pressure Hydrogen Service
,” API Recommended Practice 934.
19.
Sakai
,
T.
,
Asami
,
K.
,
Katsumata
,
M.
,
Takada
,
H.
, and
Tanaka
,
O.
,
1982
, “
Hydrogen Induced Disbonding of Weld Overlay in Pressure Vessels and Its Prevention
,”
Proceedings of the 1st International Conference on Current Solution to Hydrogen Problems in Steels
,
C. G.
Interrant
and
G. M.
Pressouyre
, eds.,
American Society for Metals
, Washington DC, pp.
340
348
.
20.
ASTM E1820-11
,
2011
, “
Standard Test Method for Measurement of Fracture Toughness
,” Annual book of ASTM standards.
21.
Clark
,
W. G.
, Jr.
, and
Landes
,
L. D.
,
1976
, “
An Evaluation of Rising Load KISCC Testing
,” ASTM STP610, pp.
108
127
.
22.
Iwadate
,
T.
,
Nomura
,
T.
, and
Watanabe
,
J.
,
1988
, “
Hydrogen Effect on Remaining Life of Hydroprocessing Reactors
,”
Corrosion
,
44
(
2
), pp.
103
112
.10.5006/1.3583906
23.
Ohtsuka
,
N.
, and
Yamamoto
,
H.
,
1987
, “
Evaluation of KISCC, KIH and Subcritical Crack Growth Rate by Holding-Load and Fractography Test
,”
Zairyo
,
36
(
402
), pp.
267
714
(in Japanese).
24.
Ohtsuka
,
N.
, and
Yamamoto
,
H.
,
1989
, “
Characteristics of Hydrogen Assisted Cracking Measurement by the Holding-Load and Fractography Method
,” ASTM STP1085, pp.
69
88
.
25.
Clarke
,
G. A.
,
Andrews
,
W. R.
,
Paris
,
P. C.
, and
Schmidt
,
D. W.
,
1976
, “
Single Specimen Tests for JIC Determination
,”
ASTM STP
590
, pp.
27
42
.
26.
Landes
,
J. D.
, and
McCabe
,
D. E.
,
1980
, “
The Effect of Hydrogen Exposure on Fracture Toughness
,”
Hydrogen Effects in Metals
,
I. M.
Bernstein
and
Anthony W.
Thompson
, eds.,
Carnegie-Mellon University
,
Pittsburgh, PA
.
27.
Bakker
,
A.
,
1985
, “
A DC Potential Drop Procedure for Crack Initiation and R-Curve Measurements During Ductile Fracture Tests
,” ASTM STP856, pp.
394
410
.
28.
ASTM E647-11
,
2012
, “
Standard Test Method for Measurement of Fatigue Crack Growth Rates
,” Annual Book of ASTM Standards.
29.
Shimomura
,
Y.
, and
Nagumo
,
M.
,
2008
, “
Ductile Crack Initiation and Growth Promoted by Hydrogen in Steel
,”
Environment-Induced Cracking of Materials
, 1st ed.,
S. A.
Shipilov
,
R. H.
Jones
,
J. M.
Olive
, and
R. B.
Rebak
, eds.,
Elsevier Science
, London, pp.
285
294
.
30.
Ritchie
,
R. O.
, and
Bathe
,
K. J.
,
1979
, “
On the Calibration of the Electrical Potential Technique for Monitoring Crack Growth Using Finite Element Methods
,”
Int. J. Fract.
,
15
(
1
), pp.
47
55
.10.1007/BF00115908
31.
Cuddy
,
L. J.
, and
Raley
,
J. C.
,
1966
, “
Stage III Recovery in Cold-Worked Iron
,”
Acta Metall.
,
14
, pp.
440
442
.10.1016/0001-6160(66)90106-4
32.
Yaguchi
,
H.
,
Murakami
,
S.
,
Fujitsuna
,
N.
,
Shinya
,
T.
,
Yamada
,
M.
, and
Sakai
,
T.
,
2004
, “
Long-Term Isothermal Aging Behavior of V-Modified 2.25Cr-1Mo Steels
,”
Proceedings of ASME
, Paper No. PVP2004-3067.
33.
Sakai
,
T.
,
Takagi
,
I.
, and
Asami
,
K.
,
1986
, “
Effect of Carbides and Inclusions on Internal Hydrogen Embrittlement of Cr-Mo Pressure Vessel Steels
,”
Tesu-to-Hagane, Iron Steel Inst. Jpn.
,
72
(
9
), pp.
1375
1382
(in Japanese).
34.
Pressouyre
,
G. M.
, and
Bernstein
,
I. M.
,
1979
, “
A Kinetic Trapping Model for Hydrogen-Induced Cracking
,”
Acta Metall.
,
27
, pp.
89
100
.10.1016/0001-6160(79)90059-2
35.
Choo
,
W. Y.
, and
Lee
,
J. Y.
,
1982
, “
Thermal Analysis of Trapped Hydrogen in Pure Iron
,”
Metall. Mater. Trans. A
,
13
(
1
), pp.
135
140
.10.1007/BF02642424
36.
Sakai
,
T.
,
Asami
,
A.
,
Kondo
,
N.
, and
Hayashi
,
T.
,
1987
, “
Effects of Carbide Forming Elements on Hydrogen Attack and Embrittlement in 2 1/4Cr-1Mo Steel
,”
Tesu-to-Hagane, Iron Steel Inst. Jpn.
,
73
(
2
), pp.
372
379
(in Japanese).
37.
Beachem
,
C. D.
,
1972
, “
A New Model for Hydrogen-Assisted Cracking (Hydrogen-Embrittlement)
,”
Metall. Trans.
,
3
, pp.
437
451
.10.1007/BF02642048
You do not currently have access to this content.