The fundamental correlations such as crack growth rate (CGR) versus K for primary water stress corrosion cracking (PWSCC) of nickel-base alloys in simulated pressurized water reactor environments are quantified with the theoretical model based on the combination of crack tip mechanics and oxidation kinetics. Materials reliability program (MRP) proposed a CGR disposition curve in a report MRP 55 for PWSCC of thick-section Alloy 600 materials. This deterministic CGR equation has been adopted by Section XI Nonmandatory Appendix O of the ASME Boiler and Pressure Code for flaw evaluation. MRP also proposed a CGR disposition curve in a report MRP 115 for PWSCC of Alloy 82/182/132 weld metals. Stress intensity factor (K), temperature and thermal activation energy are included in both MRP 55 and MRP 115 reports. Both MRP 55 and MRP 115 are engineering-based. The results of mechanism-based modeling are compared with the screened experimental data for typical PWSCC systems of nickel-base alloys and the consistence is observed.

References

References
1.
Scott
,
P. M.
, and
Benhamou
,
C.
,
2001
, “
An Overview of Recent Observation and Interpretation of IGSCC in Nickel base Alloys in PWR Primary Water
,”
Proceedings of the 10th International Conference Environmental Degradation Materials Nuclear Power Systems-Water Reactors
,
NACE, CDROM
.
2.
Scott
,
P. M.
, and
Combrade
,
P.
,
2003
, “
On the Mechanism of Stress Corrosion Crack Initiation and Growth in Alloy 600 Exposed to PWR Primary Water
,”
Proceedings of the 11th International Conference Environmental Degradation of Materials Nuclear Power Systems-Water Reactors
,
ANS
, pp.
29
35
.
3.
Scott
,
P. M.
,
Meunier
,
M. C.
,
Calonne
,
O.
,
Foucault
,
M. P.
,
Combrade
,
P.
, and
Amzallag
,
C.
,
2007
, “
Comparison of Laboratory and Field Experience of PWSCC in Alloy 182 Weld Metal
,”
Proceedings of the 13th International Conference Environment Degradation of Materials in Nuclear Power Systems-Water Reactors
,
CDROM
.
4.
MRP-55NP
,
2002
,
Materials Reliability Program (MRP) Crack Growth Rates for Evaluating Primary Water Stress Corrosion Cracking (PWSCC) of Thick-Wall Alloy 600 Materials (MRP-55NP)
, Revision 1, EPRI, Palo Alto, CA, 1006695-NP,
NRC
.
5.
White
,
G. A.
,
Hickling
,
J.
, and
Mathews
,
L. K.
,
2003
, “
Crack Growth Rates for Evaluating PWSCC of Thick-Wall Alloy 600 Material
,”
Proceedings of the 11th International Conference Environmental Degradation Materials Nuclear Power Systems-Water Reactors
,
ANS
, pp.
166
179
.
6.
MRP-115
,
2002
,
Materials Reliability Program Crack Growth Rates for Evaluating Primary Water Stress Corrosion Cracking (PWSCC) of Alloy 82, 182, and 132 Welds (MRP-115)
,
EPRI
,
Palo Alto, CA
, 1006696.
7.
White
,
G. A.
,
Nordmann
,
N. S.
,
Hickling
,
J.
, and
Harrington
,
C. D.
,
2005
, “
Development of Crack Growth Rate Disposition Curves for Primary Water Stress Corrosion Cracking (PWSCC) of Alloy 82, 182, and 132 Weldments
,”
Proceedings of 12th International Conference Environmental Degradation Materials Nuclear Power Systems-Water Reactors
,
TMS
, pp.
511
530
.
8.
ASME
,
2004
, “
Nonmandatory Appendix O Evaluation of Flaws in PWR Reactor Vessel Upper Head Penetration Nozzles
,” ASME 2004 Section XI, Division 1.
9.
Shoji
,
T.
,
Suzuki
,
S.
, and
Ballinger
,
R. G.
,
1995
, “
Theoretical Prediction of SCC Growth Behavior-Threshold and Plateau Growth Rate
,”
Proceedings of the 7th International Conference Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors
,
NACE
, pp.
881
891
.
10.
Shoji
,
T.
,
Lu
,
Z. P.
, and
Murakami
,
H.
,
2010
, “
Formulating Stress Corrosion Cracking Growth Rates by Combination of Crack Tip Mechanics and Crack Tip Oxidation Kinetics
,”
Corros. Sci.
,
52
, pp.
769
779
.10.1016/j.corsci.2009.10.041
11.
Bruemmer
,
S. M.
, and
Thomas
,
L. E.
,
2001
, “
High-Resolution Analytical Electron Microscopy Characterization of Corrosion and Cracking at Buried Interfaces
,”
Surf. Interface Anal.
,
31
(
7
), pp.
571
581
.10.1002/sia.1084
12.
Staehle
,
R. W.
,
2010
, “
Critical Analysis of Tight Cracks
,”
Corros. Rev.
,
28
(
1–2
), pp.
1
103
.10.1515/CORRREV.2010.28.1-2.1
13.
JNES
,
2005
, “
Proposed Curves for SCC Growth Rates of Ni-Base Alloys
,” JNES, JNES SS Report-0517.
14.
Foster
,
J. P.
,
Bamford
,
W. H.
, and
Pathania
,
R. S.
,
2003
, “
Alloy 600 Crack Growth Rate Stress Intensity Dependence
,”
Proceedings of the 11th International Conference Environment Degradation of Materials in Nuclear Power Systems-Water Reactors
,
ANS
, pp.
156
165
.
15.
Moshier
,
W. C.
, and
Brown
,
C. M.
,
2000
, “
Effect of Cold Work and Processing Orientation on Stress Corrosion Cracking Behavior of Alloy 600
,”
Corrosion
,
68
(
3
), pp.
307
320
.10.5006/1.3287659
16.
Cassagne
,
T.
,
Caron
,
D.
,
Daret
,
J.
, and
Lefevre
,
Y.
,
1999
, “
Stress Corrosion Crack Growth Rate Measurements in Alloys 600 and 182
,”
Proceeding of 9th International Symposium Environment Degradation of Materials Nuclear Power Systems-Water Reactors
,
TMS
, pp.
217
224
.
17.
Norring
,
K.
,
Konig
,
M.
, and
Lagerstrom
,
J.
,
2005
, “
Stress Intensity and Temperature Dependence for Crack Growth Rate in Weld Metal Alloy 182 in Primary PWR Environment
,”
Proceedings of the 12th International Conference Environment Degradation of Materials Nuclear Power Systems-Water Reactors
,
TMS
, pp.
533
539
.
18.
Paraventi
,
D. J.
, and
Moshier
,
W. C.
,
2005
, “
The Effect of Cold Work and Dissolved Hydrogen in the Stress Corrosion Cracking of Alloy 82 and Alloy 182 Weld Metals
,”
Proceedings of the12th International Conference Environment Degradation of Materials Nuclear Power Systems-Water Reactors
,
TMS
, pp.
543
553
.
19.
Amzallag
,
C.
, and
Vaillant
,
F.
,
1999
, “
Stress Corrosion Cracking Propagation Rates in Reactor Vessel Head Penetrations in Alloy 600
,”
Proceedings of the 9th International Conference Environment Degradation of Materials Nuclear Power Systems-Water Reactors
,
TMS
, pp.
235
241
.
20.
Jacko
,
R. J.
,
Gold
R. E.
,
Rao
,
G. V.
,
Koyama
,
K.
, and
Kroes
,
A.
,
2003
, “
Results of Accelerated SCC Testing of Alloy 82, Alloy 182, and Alloy 52M Weld Metals
,”
Proceedings of the U.S.NRC-ANL Conference on Vessel Penetration Inspection
,
Cracking and Repairs
,
USNRC
.
21.
Andresen
,
P. L.
,
1999
, “
SCC Testing and Data Quality Considerations
,”
Proceedings of the 9th Intenational Conference Environment Degradation of Materials Nuclear Power Systems-Water Reactors
,”
TMS
, pp.
411
422
.
22.
Shoji
,
T.
,
2005
, “
SCC Data re-Evaluation
,”
Tohoku University
, Report for JNES.
23.
Andresen
,
P. L.
, and
Ford
,
F. P.
,
1988
, “
Life Prediction by Mechanistic Modeling and System Monitoring of Environmental Cracking of Iron and Nickel-Alloys in Aqueous Systems
,”
Mater. Sci. Eng., A
,
103
(
1
), pp.
167
184
.10.1016/0025-5416(88)90564-2
24.
Ford
,
F. P.
,
1996
, “
Quantitative Prediction of Environmentally Assisted Cracking
,”
Corrosion
,
52
(
5
), pp.
375
395
.10.5006/1.3292125
25.
Vermilyea
,
D. A.
,
1977
, “
A Film Rupture Model for Stress Corrosion Cracking
,”
Proceedings of Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys
,
NACE
, pp.
208
217
.
26.
Parkins
,
R. N.
,
1987
, “
Factors Influencing Stress-Corrosion Crack-Growth Kinetics
,”
Corrosion
,
43
(
3
), pp.
130
139
.10.5006/1.3583125
27.
Newman
,
R. C.
,
1994
, “
Developments in the Slip-Dissolution Model of Stress-Corrosion Cracking
,”
Corrosion
,
50
(
9
), pp.
682
686
.10.5006/1.3293544
28.
Birks
,
N.
, and
Meier
,
G. H.
,
1983
,
Introduction to High Temperature Oxidation of Metals
,
Edward Arnold
,
London
, Chap. IV.
29.
Gao
,
Y. C.
, and
Hwang
,
K. C.
,
1981
, “
Elastic-Plastic Fields in Steady Crack Growth in a Strain-Hardening Material
,”
Proceedings of the 5th International Conference on Fracture
,
France
, Vol. 2, pp.
669
682
.
30.
Hutchinson
,
J. W.
,
1968
, “
Plastic Stress and Strain Fields at a Crack Tip
,”
J. Mech. Phys. Solids
,
16
(
5
), pp.
337
342
.10.1016/0022-5096(68)90021-5
31.
Rice
,
J. R.
, and
Rosengren
,
G. F.
,
1968
, “
Plane Strain Deformation Near a Crack Tip in a Power-Law Hardening Material
,”
J. Mech. Phys. Solids
,
16
(
1
), pp.
1
12
.10.1016/0022-5096(68)90013-6
32.
Gao
,
Y. C.
,
Zhang
,
X. T.
, and
Hwang
,
K. C.
,
1983
, “
The Asymptotic near-Tip Solution for Mode-Iii Crack in Steady Growth in Power Hardening Media
,”
Int. J. Fract.
,
21
(
4
), pp.
301
317
.10.1007/BF00942348
33.
Fan
,
T. Y.
,
Sutton
,
M. A.
, and
Zhang
,
L. X.
,
1997
, “
Plane Stress Steady Crack Growth in a Power-Law Hardening Material
,”
Int. J. Fract.
,
86
(
4
), pp.
327
341
.10.1023/A:1007410614342
34.
Anderson
,
T. L.
,
1991
,
Fracture Mechanics-Fundamentals and Applications
,
CRC Press
,
Boca Raton, Florida
, Chaps. III and IV.
35.
Shoji
,
T.
,
Lu
,
Z. P.
,
Das
,
N. K.
,
Murakami
,
H.
,
Takeda
,
Y.
, and
Ismail
,
T.
,
2009
, “
Modeling Stress Corrosion Crack Growth Rates Based Upon the Effect of Stress/Strain on Crack Tip Interface Degradation and Oxidation Reaction Kinetics
,”
ASME Pressure Vessels and Piping Division Conference
,
ASME
, Paper No. PVP2009-77615.
36.
Hall
,
M. M.
,
2008
, “
An Alternative to the Shoji Crack Tip Strain Rate Equation
,”
Corros. Sci.
,
50
(
10
), pp.
2902
2905
.10.1016/j.corsci.2008.07.011
37.
Lu
,
B. T.
,
Song
,
F.
,
Gao
,
M.
, and
Elboujdaini
,
M.
,
2010
, “
Crack Growth Model for Pipelines Exposed to Concentrated Carbonate-Bicarbonate Solution With High pH
,”
Corros. Sci.
,
52
(
12
), pp.
4064
4072
.10.1016/j.corsci.2010.08.023
38.
Machet
,
A.
,
Galtayries
,
A.
,
Marcus
,
P.
,
Combrade
,
P.
,
Jolivet
,
P.
, and
Scott
,
P. M.
,
2002
, “
XPS Study of Oxides Formed on Nickel-Base Alloys in High-Temperature and High-Pressure Water
,”
Surf. Interface Anal.
,
34
, pp.
197
200
.10.1002/sia.1282
39.
Seyeux
,
A.
,
Machet
,
A.
,
Galtayries
,
A.
,
Maurice
,
V.
, and
Noel
,
D.
,
2008
, “
Early Stages of Oxidation of Stainless Alloys in High Temperature Water: From Experiments to Modeling
,” Workshop on Detection, Avoidance, Mechanisms, Modeling, and Prediction of SCC Initiation in Water-Cooled Nuclear Reactor Plants, CDROM.
40.
Rosecrans
,
P. M.
, and
Duquette
,
D. J.
,
2001
, “
Formation Kinetics and Rupture Strain of Ni-Cr-Fe Alloy Corrosion Films Formed in High-Temperature Water
,”
Metall. Mater. Trans. A
,
32
(
12
), pp.
3015
3021
.10.1007/s11661-001-0176-9
41.
Ziemniak
,
S. E.
, and
Hanson
,
M.
,
2002
, “
Corrosion Behavior of 304 Stainless Steel in High Temperature, Hydrogenated Water
,”
Corros. Sci.
,
44
(
10
), pp.
2209
2230
.10.1016/S0010-938X(02)00004-5
42.
Ziemniak
,
S. E.
, and
Hanson
,
M.
,
2003
, “
Corrosion Behavior of NiCrMo Alloy 625 in High Temperature, Hydrogenated Water
,”
Corros. Sci.
,
45
(
7
), pp.
1595
1618
.10.1016/S0010-938X(02)00230-5
43.
Ziemniak
,
S. E.
, and
Hanson
,
M.
,
2006
, “
Corrosion Behavior of NiCrFe Alloy 600 in High Temperature, Hydrogenated Water
,”
Corros. Sci.
,
48
(
2
), pp.
498
521
.10.1016/j.corsci.2005.01.006
44.
Castelli
,
R. A.
,
Persans
,
P. D.
,
Strohmayer
,
W.
, and
Parkinson
,
V.
,
2007
, “
Optical Reflection Spectroscopy of Thick Corrosion Layers on 304 Stainless Steel
,”
Corros. Sci.
,
49
(
12
), pp.
4396
4414
.10.1016/j.corsci.2007.03.048
45.
Attanasio
,
S. A.
, and
Morton
,
D. S.
,
2003
, “
Measurement of the Nickel/Nickel Oxide Transition in Ni-Cr-Fe Alloys and Updated Data and Correlations to Quantify the Effect of Aqueous Hydrogen on Primary Water SCC
,”
Proceedings of the 11th International Conference Environmental Degradation Materials Nuclear Power Systems-Water Reactors
,
ANS
, pp.
143
154
.
46.
Proust
,
A.
,
Guilodo
,
M.
,
Barale
,
M.
,
Perrin
,
S.
,
Pijolat
,
M.
,
Wolski
,
K.
, and
Combrade
,
P.
,
2008
, “
Determination of the Kinetics of Oxidation and Cation Release of Ni Base Alloys in PWR Primary Coolant
,”
Proceedings of the 15th International Conference on the Properties of Water and Steam
, Paper No. L03-2.
47.
Shoji
,
T.
,
Lu
,
Z. P.
,
Xue
,
H.
,
Qiu
,
Y. B.
, and
Sakaguchi
,
K.
,
2010
, “
Quantifying Crack Tip Oxidation Kinetics Parameters and Their Contribution to Stress Corrosion Cracking in High Temperature Water
,”
ASME Pressure Vessels and Piping Division Conference
, Paper No. PVP2010-25238
.
48.
Xue
,
H.
, and
Shoji
,
T.
,
2007
,
“Quantitative Prediction of EAC Crack Growth Rate of Sensitized Type 304 Stainless Steel in Boiling Water Reactor Environments Based on EPFEM
,”
ASME J. Pressure Vessel Technol.
,
129
, pp.
460
467
.10.1115/1.2748827
49.
Shoji
,
T.
,
Lu
,
Z. P.
, and
Yamazaki
,
S.
,
2009
, “
The Effect of Strain-Hardening on PWSCC of Nickel-Base Alloys 600 and 690
,”
Proceedings of the 14th International Conference Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors
,”
ANS
, pp.
220
238
.
You do not currently have access to this content.