Free vibrations of fluid–solid structures are governed by unsymmetric eigenvalue problems. A common approach which works fine for weakly coupled systems is to project the problem to a space spanned by modes of the uncoupled system. For strongly coupled systems, however, the approximation properties are not satisfactory. This paper reports on a framework for taking advantage of the structure of the unsymmetric eigenvalue problem allowing for a variational characterization of its eigenvalues and structure preserving iterative projection methods. We further cover an adjusted automated multilevel substructuring (AMLS) method for huge fluid–solid structures. The reliability and efficiency of the method are demonstrated by the free vibrations of a structure completely filled with water.

References

References
1.
Ginsberg
,
J.
,
2010
, “
Derivation of a Ritz Series Modeling Technique for Acoustic Cavity-Structural Systems Based on a Constrained Hamilton Principle
,”
J. Acoust. Soc. Am.
,
127
, pp.
2749
2758
.10.1121/1.3365249
2.
Morand
,
H. J.-P.
, and
Ohayon
,
R.
,
1995
,
Fluid Structure Interaction
(Applied Numerical Methods),
John Wiley & Sons
,
Masson
.
3.
Olson
,
L.
, and
Bathe
,
K.
,
1985
, “
Analysis of Fluid-Structure Interaction. A Direct Symmetric Coupled Formulation Based on the Fluid Velocity Potential
,”
Comput. Struct.
,
21
, pp.
21
32
.10.1016/0045-7949(85)90226-3
4.
Sandberg
,
G.
, and
Ohayon
,
R.
, eds.,
2008
,
Computational Aspects of Structural Acoustics and Vibrations, CISM Courses and Lectures
, Vol.
505
,
Springer
,
Wien
.
5.
Zienkiewicz
,
O.
, and
Taylor
,
R.
,
1991
,
The Finite Element Method
, Vol.
2
,
McGraw-Hill
,
London
.
6.
Ihlenburg
,
F.
,
2008
, “
Sound in Vibrating Cabins: Physical Effects, Mathematical Formulation, Computational Simulation With Fem
,”
Computational Aspects of Structural Acoustics and Vibrations
,
G.
Sandberg
and
R.
Ohayon
, eds.,
Springer
,
Wien
, pp.
103
170
.
7.
Sandberg
,
G.
,
Wernberg
,
P.-A.
, and
Davidson
,
P.
,
2008
, “
Fundamentals of Fluid-Structure Interaction
,”
Computational Aspects of Structural Acoustics and Vibrations
,
G.
Sandberg
and
R.
Ohayon
, eds.,
Springer
,
Wien
, pp.
23
101
.
8.
ANSYS
,
2007
, ANSYS, Inc., “
Theory Reference for ANSYS and ANSYS Workbench
,” Release 11.0,
ANSYS, Inc.
,
Canonsburg, PA
.
9.
Harris
,
C.
, and
Piersol
,
A.
, eds.,
2002
,
Harris Shock and Vibration Handbook
,
5th ed.
,
McGraw-Hill
,
New York
.
10.
Bermudez
,
A.
, and
Rodriguez
,
R.
,
2002
, “
Analysis of a Finite Element Method for Pressure/Potential Formulation of Elastoacoustic Spectral Problems
,”
Math. Comp.
,
71
, pp.
537
552
.10.1090/S0025-5718-01-01335-7
11.
Kropp
,
A.
, and
Heiserer
,
D.
,
2003
, “
Efficient Broadband Vibro–Acoustic Analysis of Passenger Car Bodies Using an FE–Based Component Mode Synthesis Approach
,”
J. Comput. Acoust.
,
11
, pp.
139
157
.10.1142/S0218396X03001870
12.
Stammberger
,
M.
, and
Voss
,
H.
,
2010
, “
On an Unsymmetric Eigenvalue Problem Governing Free Vibrations of Fluid-Solid Structures
,”
Electron Trans. Numer. Anal.
,
36
, pp.
113
125
.
13.
Stammberger
,
M.
, and
Voss
,
H.
,
2011
, “
Automated Multi-Level Sub-Structuring for Fluid-Solid Interaction Problems
,”
Numer. Linear Algebra Appl.
,
18
, pp.
411
427
.10.1002/nla.734
14.
Ma
,
Z. D.
, and
Hagiwara
,
I.
,
1991
, “
Improved Mode–Superposition Technique for Modal Frequency Response Analysis of Coupled Acoustic–Structural Systems
,”
AIAA J.
,
29
, pp.
1720
1726
.10.2514/3.10795
15.
Stammberger
,
M.
,
2010
, “
On an Unsymmetric Eigenvalue Problem Governing Free Vibrations of Fluid-Solid Structures
,” Ph.D. thesis, Institute of Numerical Simulation, Hamburg University of Technology, Hamburg, Germany.
16.
Bai
,
Z.
,
Demmel
,
J.
,
Dongarra
,
J.
,
Ruhe
,
A.
, and
van der Vorst
,
H.
, eds.,
2000
,
Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide
,
SIAM
,
Philadelphia
.
17.
Voss
,
H.
,
2004
, “
An Arnoldi Method for Nonlinear Eigenvalue Problems
,”
BIT Numer. Math.
,
44
, pp.
387
401
.10.1023/B:BITN.0000039424.56697.8b
18.
Voss
,
H.
,
2007
, “
A New Justification of the Jacobi–Davidson Method for Large Eigenproblems
,”
Linear Algebra Appl.
,
424
, pp.
448
455
.10.1016/j.laa.2007.02.013
19.
Fokkema
,
D.
,
Sleijpen
,
G.
, and
van der Vorst
,
H.
,
1998
, “
Jacobi-Davidson Style QR and QZ Algorithms for the Partial Reduction of Matrix Pencils
,”
SIAM J. Sci. Comput. (USA)
,
20
, pp.
94
125
.10.1137/S1064827596300073
20.
Sleijpen
,
G.
, and
van der Vorst
,
H.
,
1996
, “
A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems
,”
SIAM J. Matrix Anal. Appl.
,
17
, pp.
401
425
.10.1137/S0895479894270427
21.
Bennighof
,
J.
,
1993
, “
Adaptive Multi-Level Substructuring Method for Acoustic Radiation and Scattering From Complex Structures
,”
Computational Methods for Fluid/Structure Interaction
,
A.
Kalinowski
, ed., Vol.
178
,
ASME
, New York, pp.
25
38
.
22.
Bennighof
,
J.
, and
Kaplan
,
M.
,
1998
, “
Frequency Window Implementation of Adaptive Multi-Level Substructuring
,”
ASME J. Vibr. Acoust.
,
120
, pp.
409
418
.10.1115/1.2893845
23.
Bennighof
,
J.
, and
Lehoucq
,
R.
,
2004
, “
An Automated Multilevel Substructuring Method for the Eigenspace Computation in Linear Elastodynamics
,”
SIAM J. Sci. Comput. (USA)
,
25
, pp.
2084
2106
.10.1137/S1064827502400650
24.
Hurty
,
W.
,
1960
, “
Vibration of Structure Systems by Component-Mode Synthesis
,”
ASCE J. Eng. Mech. Div.
,
86
, pp.
51
69
.
25.
Craig
,
R.
, Jr.
, and
Bampton
,
M.
,
1968
, “
Coupling of Substructures for Dynamic Analysis
,”
AIAA J.
,
6
, pp.
1313
1319
.10.2514/3.4741
You do not currently have access to this content.