The paper provides details about tests on six steel cones. Test models were machined from 250 mm diameter billet. All cones had substantial and integral top and bottom flanges in order to secure well defined boundary conditions. Experimental data were obtained for: (i) two cones subjected to axial compression, (ii) two cones subjected to external pressure, and (iii) the remaining two models subjected to combined action of external pressure and axial compression. Apart from axisymmetric modeling of tested cones, true geometry with true wall thickness was also used in calculations. Theoretical failure loads were obtained for: (i) elastic perfectly plastic, (ii) engineering stress–strain, and (iii) true stress–true strain modeling of steel. The latter approach coupled with measured geometry and wall thickness secured safe predictions of the collapse loads in all cases. Comparisons of experimental collapse loads with estimates given by ASME and ECCS design codes are included. It is seen here that the ASME and ECCS rules provide a safety margin of about 100% against the collapse (except 50% for axial compression in the case of the ECCS).

References

References
1.
Liu
,
S.
,
Yang
,
N.
, and
Han
,
Q.
,
2010
, “
Research and Development of Deep Sea Mining Technology in China
,”
Proceedings of International Conference on Ocean, Offshore and Arctic Engineering, OMAE2010
,
Shanghai, China, ASME, Paper No. OMAE2010-20527
,
pp.
1
7
.
2.
Yamaki
,
N.
,
1984
,
Elastic Stability of Circular Cylindrical Shells
,
North-Holland
,
Amsterdam, New York
,
pp.
383
476
.
3.
Błachut
,
J.
,
2008
, “
Elastic Buckling of Vertical Cantilevered Cylinders
,”
J. Appl. Theor. Mech.
,
46
(
4
),
pp.
1
21
.
4.
Singer
,
J.
,
Arbocz
,
J.
, and
Weller
,
T.
,
2002
,
Buckling Experiments: Experimental Methods in Buckling of Thin-Walled Structures
,
John Wiley & Sons, Inc.
,
New York
,
Vol.
2
.
5.
Bushnell
,
D.
,
1985
,
Computerised Buckling of Shells
,
Martinus Nijhoff Publishers
,
Dordrecht, Boston
, p.
423
p
.
6.
Sofiyev
,
A. H.
,
2010
, “
Buckling Analysis of FGM Circular Shells Under Combined Loads and Resting on the Pasternak Type Elastic Foundation
,”
Mech. Res. Commun.
,
37
(
6
),
pp.
539
544
.10.1016/j.mechrescom.2010.07.019
7.
Błachut
,
J.
,
Galletly
,
G. D.
, and
James
,
S.
,
1996
, “
On Plastic Buckling Paradox
,”
Proc. Inst. Mech. Eng.
,
210
,
pp.
477
488
.
8.
Giezen
,
J. J.
,
Babcock
,
C. D.
, and
Singer
,
J.
,
1991
, “
Plastic Buckling of Cylindrical Shells Under Biaxial Loading
,”
Exp. Mech.
,
31
(
4
),
pp.
337
343
.10.1007/BF02325990
9.
Błachut
,
J.
, and
Ifayefunmi
,
O.
,
2010
, “
Plastic Buckling of Conical Shells
,”
Trans. ASME J. Offshore Mech. Arct. Eng.
,
132
(
4
), p.
041401
.10.1115/1.4001437
10.
Błachut
,
J.
, and
Ifayefunmi
O.
,
2012
, “
Buckling of Unstiffened Steel Cones Subjected to Axial Compression and External Pressure
,”
Trans. ASME J. Offshore Mech. Arct. Eng.
,
134
(
3
), p.
031603
.10.1115/1.4004953
11.
Błachut
,
J.
,
2011
, “
On Elastic-Plastic Buckling of Cones
,”
Thin-Walled Struct.
,
49
(
1
),
pp.
45
52
.10.1016/j.tws.2010.08.005
12.
Błachut
,
J.
,
Ifayefunmi
,
O.
, and
Corfa
,
M.
,
2011
, “
Collapse and Buckling of Conical Shells
,”
Proceedings of the Twenty First International Offshore and Polar Engineering Conference, ISOPE-2011
, Maui, Hawaii, H.W. Jin, B. Newbury, M. Fujikubo, T.W. Nelson, and O.M. Akelson, eds.,
ISOPE
,
Cupertino, CA
,
Vol.
4
,
pp.
887
893
.
13.
Ross
,
C. T. F.
,
Andriosopoulos
,
G.
, and
Little
,
A. P. F.
,
2008
, “
Plastic General Instability of Ring-Stiffened Conical Shells Under External Pressure
,”
Appl. Mech. Mater.
,
13–14
,
pp.
213
223
.10.4028/www.scientific.net/AMM.13-14.213
14.
Cooper
,
P. A.
, and
Dexter
,
C. B.
,
1974
, “
Buckling of a Conical Shell With Local Imperfections
,”
Report No. NASA TM X-2991
,
pp.
1
21
.
15.
Hilburger
,
M. W.
,
Nemeth
,
M. P.
,
Starnes
, Jr.,
J. H.
,
2004
, “
Shell Buckling Design Criteria Based on Manufacturing Imperfection Signatures
,”
Report No. NASA TM 212659
,
pp.
1
20
.
16.
Rotter
,
J. M.
,
2011
, “
The New Framework for Shell Buckling Design and the European Shell Buckling Recommendations Fifth Edition
,”
Trans. AMSE J. Pressure Vessel Technol.
,
133
(
1
), p.
011203
.10.1115/1.4002565
17.
Williams
,
D. K.
,
Williams
,
J. R.
, and
Hari
,
Y.
,
2009
, “
Buckling of Imperfect, Axisymmetric Homogenous Shells of Variable Thickness: Perturbation Solution
,”
Trans. ASME J. Pressure Vessel Technol.
,
131
(
5
), p.
051209
.10.1115/1.3148823
18.
Ifayefunmi
,
O.
,
2011
, “
Combined Stability of Cones
,”
Ph.D. thesis
,
The University of Liverpool
,
UK
.
19.
Hibbitt, Karlsson, Sorensen
,
2006
,
ABAQUS—Theory and Standard User's Manual Version 6.4
,
Pawtucket
,
RI
.
20.
Bushnell
,
D.
,
1976
, “
Bosor5: Program for Buckling of Elastic-Plastic Complex Shells of Revolution Including Large Deflections and Creep
,”
Comput. Struct.
,
6
(
3
),
pp.
221
239
.10.1016/0045-7949(76)90034-1
21.
John
,
M.
, and
Holt
,
T.
,
2000
, “
Uniaxial Tension Testing
,”
ASM Handbook
,
Vol.
8
,
Mechanical Testing and Evaluation
,
pp.
124
142
.
22.
Dieter
,
G. E.
,
2000
, “
Mechanical Behaviour under Tensile and Compressive Loads
,”
ASM Handbook
,
Vol.
8
,
Mechanical Testing and Evaluation
,
pp.
99
108
.
23.
ASME
,
2008
, “
Code Case 2286-2, Alternative Rules for Determining Allowable External Pressure and Compressive Stresses for Cylinders, Cones, Sphere and Formed Heads, Section VII, Divisions 1 and 2
,”
Cases of the ASME Boiler and Pressure Vessel Code
,
ASME
,
New York
,
pp.
1
13
.
24.
ECCS TC8 TWG 8.4 Shells
,
2008
,
Buckling of Steel Shells—European Design Recommendations
,
5th ed.
,
ECCS, Multicomp Lda
,
Portugal
,
No.
125
, p.
384
.
You do not currently have access to this content.