It has been well established that guided waves are sensitive to structural damages encountered on their path of propagation and for this reason this technique is very efficient for distinguishing defective structural components from defect-free ones. Although the guided wave technique can identify a specimen having a distribution of defects, detecting and quantifying a small defect on its path from a long distance, as required for structural health monitoring (SHM) applications, is not an easy task for the guided wave inspection technique even today, especially when the transducers cannot come in direct contact with the pipe wall. The current technological challenges for pipe inspection by generating guided waves using noncontact transducers are to detect a small defect on the pipe wall and estimate its location and size from a long distance when the reflected signal from the defect cannot be clearly identified as is the case for low frequency guided waves that can propagate long distances. Electro-magnetic acoustic transducers (EMATs) are used here to generate guided waves in the pipe by the noncontact technique. This paper shows how small a defect in a pipe wall can be detected and its location and dimension can be estimated using relatively low frequency guided waves generated and received by EMATs even when the defect signal is not clearly visible in the time history plot because various wave modes reflected from the defect and pipe ends overlap.

References

References
1.
Gazis
,
D. Z.
, 1959, “
Three Dimensional Investigation of Propagation of Waves in Hollow Circular Cylinders. I.Analytical Foundation
,”
J. Acoust. Soc. Am.
,
31
, pp.
568
573
.
2.
Gazis
,
D. Z.
, 1959, “
Three Dimensional Investigation of Propagation of Waves in Hollow Circular Cylinders. II.Numerical Results
,”
J. Acoust. Soc. Am.
,
31
, pp.
573
578
.
3.
Greenspon
,
J. E.
, 1960, “
Axially Symmetric Vibrations of a Thick Cylindrical Shell Comparison of the Exact Theory With Approximate Theories
,”
J. Acoust. Soc. Am.
,
32
, pp.
1017
1025
.
4.
Greenspon
,
J. E.
, 1960, “
Vibration of a Thick Walled Cylindrical Shell Comparison of the Exact Theory With Approximate Theories
,”
J. Acoust. Soc. Am.
,
32
, pp.
571
578
.
5.
Zemanek
,
J.
, Jr.
, 1972, “
An Experimental and Theoretical Investigation of Elastic Wave Propagation in a Cylinder
,”
J. Acoust. Soc. Am.
,
51
, pp.
205
225
.
6.
Silk
,
M. G.
, and
Bainton
,
K. F.
, 1979, “
The Propagation in Metal Tubing of Ultrasonic Wave Modes Equivalent to Lamb Waves
,”
Ultrasonics
,
17
(1)
, pp.
11
19
.
7.
Brook
,
M.
,
Ngoc
,
T. D. K.
, and
Eder
,
J.
, 1990, “
Ultrasonic Inspection of Steam Generator Tubing by Chemical Guided Waves
,”
Review of Progress in QNDE 9
,
D. O.
Thomson
and
D. E.
Chimenti
, eds.,
Plenum Press
,
New York
, 17(1), pp.
243
249
. Available at http://www.sciencedirect.com/science/article/pii/0041624X79900064http://www.sciencedirect.com/science/article/pii/0041624X79900064
8.
Lowe
,
M. J. S.
,
Alleyne
,
D. N.
, and
Cawley
,
P.
, 1998, “
Defect Detection in Pipes Using Guided Waves
,”
Ultrasonics
,
36
, pp.
147
154
.
9.
Lowe
,
M. J. S.
,
Alleyne
,
D. N.
, and
Cawley
,
P.
, 1998, “
Mode Conversion of a Guided Wave by a Part-Circumferential Notch in a Pipe
,”
ASME J. Appl. Mech.
,
65
, pp.
649
656
.
10.
Cawley
,
P.
,
Lowe
,
M. J. S.
,
Alleyne
,
D. N.
,
Pavlakovic
,
B.
, and
Wilcox
,
P.
, 2003, “
Practical Long Range Guided Wave Testing: Application to Pipes and Rail
,”
Mater. Eval.
,
61
, pp.
66
74
.
11.
Alleyne
,
D. N.
, and
Cawley
,
P.
, 2003, “
Long Range Propagation of Lamb Waves in Chemical Plant Pipe Work
,”
Mater. Eval.
,
55
, pp.
504
508
.
12.
Demma
,
A.
,
Cawley
,
P.
,
Lowe
,
M. J. S.
,
Roosenbrand
,
A. G.
, and
Pavlakovic
,
B.
, 2004, “
The Reflection of Guided Waves From Notches in Pipes: A Guide for Interpreting Corrosion Measurements
,”
NDT & E Int.
,
37
, pp.
167
180
.
13.
Rose
,
J. L.
,
Ditri
,
J. J.
,
Pilarski
,
A.
,
Rajana
,
K.
, and
Carr
,
F.
, 1994, “
A Guided Wave Inspection Technique for Nuclear Steam Generator Tubing
,”
NDT & E Int.
,
27
(
6
), pp.
307
310
.
14.
Rose
,
J. L.
,
Rajana
,
K. M.
, and
Carr
,
F. T.
, 1994, “
Ultrasonic Guided Wave Inspection Concepts for Steam Generator Tubing
,”
Mater. Eval.
,
52
(
2
), pp.
134
139
.
15.
Rose
,
J. L.
, 1999,
Ultrasonic Waves in Solid Media
,
Cambridge University Press
,
New York, NY.
16.
Rose
,
J. L.
, 2002, “
Guided Wave Ultrasonic Pipe Inspection—The Next Generation
,”
8th European Conference on Non Destructive Testing Barcelona
, Spain, pp.
17
21
.
17.
Barshinger
,
J.
,
Rose
,
J. L.
, and
Avioli
,
M. J.
, 2002, “
Guided Wave Resonance Tuning for Pipe Inspection
,”
ASME, J. Pressure Vessel Technol.
,
124
, pp.
303
310
.
18.
Hay
,
T. R.
, and
Rose
,
J. L.
, 2002, “
Flexible PVDF Comb Transducers for Excitation of Axisymmetric Guided Waves in Pipe
,”
Sens. Actuators A
,
100
, pp.
18
23
.
19.
Guo
,
D.
, and
Kundu
,
T.
, 2000, “
A New Sensor for Pipe Inspection by Lamb Waves
,”
Mater. Eval.
,
58
(
8
), pp.
991
994
.
20.
Guo
,
D.
, and
Kundu
,
T.
, 2001, “
A New Transducer Holder Mechanism for Pipe Inspection
,”
J. Acoust. Soc. Am.
,
110
(
1
), pp.
305
309
.
21.
Na
,
W. B.
,
Kundu
,
T.
, and
Ehsani
,
M. R.
, 2002, “
Ultrasonic Guided Waves for Steel Bar-Concrete Interface Inspection
,”
Mater. Eval.
,
60
(
3
), pp.
437
444
.
22.
Na
,
W. B.
, and
Kundu
,
T.
, 2002, “
Underwater Pipe Inspection Using Guided Waves
,”
ASME J. Pressure Vessel Technol.
,
124
(
2
), pp.
196
200
.
23.
Na
,
W. B.
, and
Kundu
,
T.
, 2002, “
EMAT-Based Inspection of Concrete Filled Steel Pipes for Internal Voids and Inclusions
,”
ASME J. Pressure Vessel Technol.
,
124
, pp.
265
272
.
24.
Ahmad
,
R.
,
Banerjee
,
S.
, and
Kundu
,
T.
, 2009, “
Pipe Wall Damage Detection in Buried Pipes Using Guided Waves
,”
ASME J. Pressure Vessel Technol.
,
131
(
1
), p.
011501
.
25.
Vasiljevic
,
M.
,
Kundu
,
T.
,
Grill
,
W.
, and
Twerdowski
,
E.
, 2008, “
Pipe Wall Damage Detection by Electromagnetic Acoustic Transducer Generated Guided Waves in Absence of Defect Signals
,”
J. Acoust. Soc. Am.
,
123
(
5
), pp.
2591
2597
.
You do not currently have access to this content.