In this research, an analysis technique is developed to model orthotropic composite toroids and optimize the fiber layup, accounting for the natural variation in thickness due to fiber stacking. The behavior of toroids is difficult to model using membrane shell theories due to a singularity in the strain-displacement relations occurring at the toroid crest that yields discontinuous displacement results. A technique is developed here where the constitutive properties of multilayered toroidal shells are determined using lamination theory, and the toroid strains and line loads are determined using finite element analysis. The toroid strains are rotated into the fiber directions, allowing the fiber stress and transverse stress distributions to be determined for each layer. The fiber layup is modified heuristically until an optimum is found. An optimum is reached when the maximum fiber and transverse direction stresses of each shell layer are equal, minimizing wasted fibers and excess weight. Test cases are analyzed to verify the accuracy of the finite element model and an example composite toroid with Kevlar/epoxy material properties is optimized. The analysis technique developed here can decrease the time and cost associated with the development of orthotropic toroidal pressure vessels, resulting in lighter, cheaper, and more optimal structures. The models developed can be expanded to include a steel liner and a broader range of fiber winding patterns.

References

References
1.
Podvig
,
P.
,
Bukharin
,
O.
, and
Hippel
,
F.
, 2004,
Russian Strategic Nuclear Forces
,
MIT Press
,
Cambridge, MA
, pp.
214
215
.
2.
Timoshenko
,
S.
, and
Woinowsky-Kreiger
,
S.
, 1959,
Theory of Plates and Shells
,
McGraw-Hill
,
New York, NY
, Chap. 14.
3.
Ugural
,
A.
, 1999,
Stresses in Plates and Shells
,
McGraw-Hill
,
New York, NY
, Chap. 12.
4.
Dean
,
W. R.
, 1939, “
The Distortion of a Curved Tube Due to Internal Pressure
,”
Philos. Mag.
,
28
(
189
), pp.
452
464
.
5.
Clark
,
R. A.
, 1950, “
On the Theory of Thin Elastic Toroidal Shells
,”
J. Math. Phys. (Cambridge, Mass.)
,
29
(
3
), pp.
146
178
.
6.
Kydoniefs
,
A. D.
, and
Spencer
,
A. J.
, 1967, “
The Finite Inflation of an Elastic Toroidal Membrane of Circular Cross Section
,”
Int. J. Eng. Sci.
,
5
(
4
), pp.
367
391
.
7.
Kydoniefs
,
A. D.
, 1967, “
The Finite Inflation of an Elastic Toroidal Membrane
,”
Int. J. Eng. Sci.
,
5
(
6
), pp.
477
494
.
8.
Ren
,
W.
,
Liu
,
W.
,
Zhang
,
W.
,
Reimerdes
,
H. G.
, and
Oery
,
H.
, 1999, “
A Survey of Works on the Theory of Toroidal Shells and Curved Tubes
,”
Acta Mech. Sin.
,
15
(
3
), pp.
225
234
.
9.
Jordan
,
P. F.
, 1962, “
Stresses and Deformations of the Thin-Walled Pressurized Torus
,”
J. Aerosp. Sci.
,
29
(
2
), pp.
213
225
.
10.
Sanders
,
J. L.
, and
Liepins
,
A. A.
, 1963, “
Toroidal Membrane Under Internal Pressure
,”
AIAA J.
,
1
(
9
), pp.
2105
2110
.
11.
Tielking
,
J. T.
,
McIvor
,
I. K.
, and
Clark
,
S. K.
, 1971, “
A Modified Linear Membrane Theory for the Pressurized Toroid
,”
ASME J. Appl. Mech.
,
38
(
2
), pp.
418
422
.
12.
Hinton
,
J.
,
Sienz
,
J.
, and
Özakça
,
M.
, 2003,
Analysis and Optimization of Prismatic and Axisymmetric Shell Structures
,
Springer
,
London, United Kingdom
, Chap. 4.
13.
Papargyri-Beskou
,
S.
, 2005, “
Finite-Element Analysis of an Axisymmetric, Thin-Walled, Nonlinear Elastic Pressurized Torus
,”
Acta Mech.
,
178
, pp.
1
22
.
14.
Clark
,
S. K.
,
Budd
,
C. B.
, and
Tielking
,
J. K.
, 1972, “
Tire Shape Calculations by the Energy Method
,”
Kautsch. Gummi Kunstst.
,
25
(
12
), pp.
587
596
.
15.
Maksimyuk
,
V. A.
, and
Chernyshenko
,
I. S.
, 1999, “
Nonlinear Elastic State of Thin-Walled Toroidal Shells Made of Orthotropic Composites
,”
Int. Appl. Mech.
,
35
(
12
), pp.
1238
1245
.
16.
Marketos
,
J. D.
, 1963, “
Optimum Toroidal Pressure Vessel Filament Wound Along Geodesic Lines
,”
AIAA J.
,
1
(
8
), pp.
1942
1945
.
17.
Li
,
S.
, and
Cook
,
J.
, 2002, “
An Analysis of Filament Overwound Toroidal Pressure Vessels and Optimum Design of Such Structures
,”
ASME J. Pressure Vessel Technol.
,
24
(
2
), pp.
215
222
.
18.
Herakovich
,
C. T.
, 1998,
Mechanics of Fibrous Composites
,
John Wiley and Sons, Inc.
,
New York, NY
, Chap. 5.
19.
Tsai
,
S. W.
, and
Hahn
,
H. T.
, 1980,
Introduction to Composite Materials
,
Technomic Publishing Company
,
Westport, CT
, Chap. 4–6.
20.
ANSYS, Inc., “
Release 11.0 Documentation for ANSYS.
You do not currently have access to this content.