Abstract
“Ratcheting” is a phenomenon which leads to reduction in fatigue life of a structural component by loss of ductility due to cycle by cycle accumulation of plastic strain. Ratcheting occurs in a structure subjected to a combination of steady/sustained and cyclic loads such that the material response is in inelastic region. Ratcheting studies were carried out on Type 304LN stainless steel elbows, subjected to steady internal pressure and cyclic bending. The elbows filled with water were pressurized between 27.6 MPa and 39.2 MPa. Cyclic bending load, under opening and closing moments, was applied on the elbows at ambient temperature. Number of cycles corresponding to occurrence of a through-wall crack was recorded. Crack was observed in the bent portion at one of the crown locations in all the four specimens. Maximum strain was observed at the intrados and crown locations of the elbows. The ratcheting strain increased with number of cycles at crown and intrados locations. However, the strain accumulation rate decreased with number of cycles. Strain was observed to be minimum at the extrados location and the same stabilized toward the end of the tests. The specimens have failed by occurrence of through-wall axial crack accompanied by simultaneous ballooning. The ballooning was found to be varying from 3.8% to 5.8% with respect to the original circumference in the bent portion. The reduction in thickness was found to be around 12%–15%.