This paper is aimed to study dynamic actuation of circular tubular shell structures coupled with distributed electrostrictive actuator segments. A mathematical model of the hybrid elastic/electrostrictive circular tubular shell, including the electrostrictive/elastic/control couplings, is derived. The generalized electrostrictive control actuation induced by an arbitrary electrostrictive actuator segment consists of three contributing components: the circumferential membrane control action, the longitudinal bending control action, and the circumferential bending control action. In particular, spatial modal actuation characteristics of the total actuation and the three contributing components corresponding to various design parameters (e.g., actuator thickness, shell radius, and thickness) are evaluated and compared with respect to actuator patch sizes. Analysis data suggest that the electrostrictive membrane control actuation dominates the overall control action in lower shell modes; however, the control moment becomes important in higher shell modes. Optimal placements of electrostrictive actuator segments on the circular tubular shell are identified. Modal filtering behaviors, due to cancellation of internal attenuation/amplification effects, occur when large-size actuators are used, rendering the actuation less effective.

References

References
1.
Tzou
,
H. S.
,
Lee
,
H.-J.
, and
Arnold
,
S. M.
, 2004, “
Smart Materials, Precision Sensors/Actuators, Smart Structures and Structronic Systems
,”
Mech. Adv. Mater. Struct.
,
11
, pp.
367
393
.
2.
Tzou
,
H. S.
,
Bao
,
Y.
, and
Venkayya
,
V. B.
, 1996, “
Parametric Study of Segmented Transducers Laminated on Cylindrical Shells, Part 2: Actuator Patches
,”
J. Sound Vib.
,
197
(
2
), pp.
225
249
.
3.
Shih
,
H.-R.
,
Smith
,
R.
, and
Tzou
,
H. S.
, 2004, “
Photonic Control of Cylindrical Shells With Electro-Optic Photostrictive Actuators
,”
AIAA J.
,
42
(
2
), pp.
341
347
.
4.
Tzou
,
H. S.
, and
Zhong
,
J. P.
, 1996, “
Spatially Filtered Vibration Control of Cylindrical Shells
,”
Shock Vib.
,
3
(
4
), pp.
269
278
.
5.
Tani
,
J.
,
Qiu
,
J.
, and
Miura
,
H.
, 1995, “
Vibration Control of a Cylindrical Shell Using Piezoelectric Actuators
,”
J. Intell. Mater. Syst. Struct.
,
6
, pp.
380
388
.
6.
Liew
,
K. M.
,
He
,
X. Q.
,
Ng
,
T. Y.
, and
Kitipornchai
,
S.
, 2002, “
Active Control of FGM Shells Subjected to a Temperature Gradient via Piezoelectric Sensor/Actuator Patches
,”
Int. J. Numer. Methods Eng.
,
55
, pp.
653
668
.
7.
Jang
,
L. S.
,
Shu
,
K.
,
Yu
,
Y. C.
,
Li
,
Y. J.
, and
Chen
,
C. H.
, 2009, “
Effect of Actuation Sequence on Flow Rates of Peristaltic Micropumps With PZT Actuators
,”
Biomed. Microdevices
,
11
, pp.
173
181
.
8.
Pablo
,
F.
,
Osmont
,
D.
, and
Ohayon
,
R.
, 2003, “
Modeling of Plate Structures Equipped With Current Driven Electrostrictive Actuators for Active Vibration Control
,”
J. Intell. Mater. Syst. Struct.
,
14
, pp.
173
183
.
9.
Fripp
,
M. L. R.
, and
Hagood
,
N. W.
, 1997, “
Distributed Structural Actuation With Electrostrictors
,”
J. Sound Vib.
,
203
(
1
), pp.
11
40
.
10.
Heydt
,
R.
,
Kornbluh
,
R.
,
Pelrine
,
R.
, and
Mason
,
V.
, 1998, “
Design and Performance of an Electrostrictive-Polymer-Film Acoustic Actuator
,”
J. Sound Vib.
,
215
(
2
), pp.
297
311
.
11.
Tzou
,
H. S.
, and
Chai
,
W. K.
, 2007,
Design and Testing of a Hybrid Polymeric Electrostrictive/Piezoelectric Beam With Bang-bang Control,”
Mech. Syst. Signal Process.
,
21
(
1
), pp.
417
429
.
12.
Chen
,
C. Q.
, and
Shen
,
Y. P.
, 1997, “
Optimal Control of Active Structures With Piezoelectric Modal Sensors and Actuators
,”
Smart Mater. Struct.
,
6
, pp.
403
409
.
13.
Ray
,
M. C.
, and
Reddy
,
J. N.
, 2007, “
Optimal Control of Thin Circular Cylindrical Laminated Composite Shells Using Active Constrained Layer Damping Treatment
,”
Smart Mater. Struct.
,
13
, pp.
64
72
.
14.
Kumar
,
R.
,
Mishra
,
B. K.
, and
Jain
,
S. C.
, 2008, “
Static and Dynamic Analysis of Smart Cylindrical Shell
,”
Finite Elem. Anal. Design
,
45
, pp.
13
24
.
15.
Tzou
,
H. S.
,
Chai
,
W. K.
, and
Arnold
,
S. M.
, 2006, “
Structronics and Actuation of Hybrid Electrostrictive/Piezoelectric Thin Shells
,”
ASME J. Vibr. Acoust.
,
128
, pp.
79
87
.
16.
Chai
,
W. K.
, 2004, “
Micro-Electromechanics and Distributed Control of Hybrid Electrostrictive/Piezoelectric Shell Structronic Systems
,”
Ph.D. thesis
,
Department of Mechanical Engineering, University of Kentucky
,
Lexington, KY
.
17.
Tzou
,
H. S.
, 1993,
Piezoelectric Shells—Distributed Sensing and Control of Continua (Solid Mechanics and its Application)
, Vol.
19
,
Kluwer Academic Publishers
,
Boston/Dordrecht
, ISBN 0-7923-2186-3.
18.
Soedel
,
W.
, 1981,
Vibrations of Shells and Plates
,
Marcel Dekker, Inc.
,
New York/Basel
.
19.
Tzou
,
H. S.
, and
Bao
,
Y.
, 1997, “
Nonlinear Piezothermoelasticity and Multi-Field Actuations, Part 1: Nonlinear Anisotropic Piezothermoelastic Shell Laminated
,”
ASME J. Vibr. Acoust.
,
119
, pp.
374
381
.
You do not currently have access to this content.